精英家教网 > 高中数学 > 题目详情
4.若实数x,y满足约束条件$\left\{\begin{array}{l}x≤4\\ x-y+3≥0\\ 2x+y-6≥0\end{array}\right.$,则$\frac{y}{x+1}$的最大值为2.

分析 作出不等式组对应的平面区域,$\frac{y}{x+1}$的几何意义是区域内的点到定点(-,1)的斜率,利用数形结合进行求解即可.

解答 解:作出约束条件所对应的可行域(如图阴影),
$\frac{y}{x+1}$的几何意义是区域内的点到定点P(-1,0)的斜率,
由图象知可知AB的斜率最大,
由$\left\{\begin{array}{l}{x-y+3=0}\\{2x+y-6=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即B(1,4),
则$\frac{y}{x+1}$=$\frac{4}{1+1}=\frac{4}{2}=2$,
即$\frac{y}{x+1}$的最大值为2,
故答案为:2

点评 本题考查简单线性规划,涉及直线的斜率公式,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.cos45°•cos15°+sin45°•sin15°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知0<a≠1,函数f(x)=3+$\frac{{a}^{x}-1}{{a}^{x}+1}$+xcosx(-1≤x≤1),设函数f(x)的最大值是M,最小值是N,则(  )
A.M+N=8B.M+N=6C.M-N=8D.M-N=6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,有$\sqrt{3}$acosC-csinA=0,求:
(1)角C的大小;
(2)b=4,S△ABC=6$\sqrt{3}$,求边长c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{PF}$=4$\overrightarrow{FQ}$,则|QF|5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若动点P在直线l1:x-y+1=0上,动点Q在直线l2:x+y-7=0上,且|PQ|=2,设线段PQ的中点为M(x0,y0),则x02+y02的取值范围是[16,36].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}满足a2=3,a7=a3+8.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=mx-alnx-m,g(x)=$\frac{ex}{e^x}$(e=2.71828…),其中m,a均为实数.
(1)求g(x)的极值;
(2)设a=2,若对?给定的x0∈(0,e],在区间(0,e]上总存在t1,t2(t1≠t2)使得f(t1)=f(t2)=g(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知:$\frac{{A}_{n}^{3}}{6}$=n(n∈N*),(2-x)n=a0+a1x+a2x2+…+anxn
求a0-a1+a2-…+(-1)na${\;}_{n}^{\;}$的值.

查看答案和解析>>

同步练习册答案