精英家教网 > 高中数学 > 题目详情
3.若一个样本空间Ω={1,2,3,4,5,6},令事件A={2,3,5},B=(1,2,4,5,6),则P(B|A)=$\frac{2}{3}$.

分析 根据题意,利用古典概型概率公式求出事件B,AB发生的概率;利用条件概率公式求出P(B|A).

解答 解:P(A)=$\frac{3}{6}$=$\frac{1}{2}$,P(AB)=$\frac{2}{6}$=$\frac{1}{3}$
由条件概率公式得P(A|B)=$\frac{\frac{1}{3}}{\frac{1}{2}}$=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题考查古典概型概率公式、条件概率公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.某交互式计算机有20个终端,这些终端由各个单位独立操作,使用率均为0.8,则20个终端中至少有一个没有使用的概率为(  )
A.0.220B.0.820C.1-0.820D.1-0.220

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.cos45°•cos15°+sin45°•sin15°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,其中a1=1,Sn=3Sn-1+1(n>1,n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点.已知AB=3米,AD=2米.设AN=x(单位:米),若x∈[3,4](单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法中,正确的个数为(  )
(1)$\overrightarrow{AB}$+$\overrightarrow{MB}$+$\overrightarrow{BC}$+$\overrightarrow{OM}$+$\overrightarrow{CO}$=$\overrightarrow{AB}$;
(2)已知向量$\overrightarrow{a}$=(6,2)与$\overrightarrow{b}$=(-3,k)的夹角是钝角,则k的取值范围是(-∞,9);
(3)向量$\overrightarrow{{e}_{1}}$=(2,-3),$\overrightarrow{{e}_{2}}$=($\frac{1}{2}$,-$\frac{3}{4}$)能作为平面内所有向量的一组基底;
(4)若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知0<a≠1,函数f(x)=3+$\frac{{a}^{x}-1}{{a}^{x}+1}$+xcosx(-1≤x≤1),设函数f(x)的最大值是M,最小值是N,则(  )
A.M+N=8B.M+N=6C.M-N=8D.M-N=6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,有$\sqrt{3}$acosC-csinA=0,求:
(1)角C的大小;
(2)b=4,S△ABC=6$\sqrt{3}$,求边长c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=mx-alnx-m,g(x)=$\frac{ex}{e^x}$(e=2.71828…),其中m,a均为实数.
(1)求g(x)的极值;
(2)设a=2,若对?给定的x0∈(0,e],在区间(0,e]上总存在t1,t2(t1≠t2)使得f(t1)=f(t2)=g(x0)成立,求m的取值范围.

查看答案和解析>>

同步练习册答案