精英家教网 > 高中数学 > 题目详情
6.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示.
(1)请填写如表:
平均数方差中位数命中9环及9环以上的次数
     
 
(2)请从下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看(谁的成绩更稳定);
②从折线图上两人射击命中环数的走势看(谁更有潜力).

分析 (1)根据题意,计算甲乙二人的平均数与方差,填写表格;
(2)根据平均数与方差判断甲乙二人稳定性,
从频率分布折线图分析出甲乙两人谁更有潜力.

解答 解:(1)根据题意,计算平均数与方差,填写如表:

平均数方差中位数命中9环及9环以上的次数
7   1.271  
75.4 7.53
(2)甲乙二人的平均数相同,甲的方差小于乙的方差,说明甲同学的成绩较乙同学稳定;
两人命中的环数:甲同学的成绩在平均数附近摆动,
在后半部分乙同学命中环数呈上升趋势,而甲同学命中的环数呈下降趋势,
说明乙同学有潜力.

点评 本题考查了频率分布直方图与折线图的应用问题,也考查了求平均数与方差的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设f(x)=x3-$\frac{1}{2}{x^2}$-2x+3,当x∈[-1,2]时,f(x)<m-1恒成立,则实数m的取值范围为(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知:E是正方形ABCD的AB边延长线上一点,DE交CB于M,MN∥AE.求证:MN=MB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.cos45°•cos15°+sin45°•sin15°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)曲线C的极坐标方程为$ρcos(θ-\frac{π}{3})=\frac{1}{2}$,以极点O为原点,极轴Ox为x的非负半轴,保持单位长度不变建立直角坐标系xoy.求曲线C的直角坐标方程;
(2)已知直线l经过点P(1,1),倾斜角α=$\frac{π}{6}$,
①写出直线l的参数方程.
②设l与圆x2+y2=4相交与两点A,B,求点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,其中a1=1,Sn=3Sn-1+1(n>1,n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{{a}_{n}}$}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点.已知AB=3米,AD=2米.设AN=x(单位:米),若x∈[3,4](单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知0<a≠1,函数f(x)=3+$\frac{{a}^{x}-1}{{a}^{x}+1}$+xcosx(-1≤x≤1),设函数f(x)的最大值是M,最小值是N,则(  )
A.M+N=8B.M+N=6C.M-N=8D.M-N=6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}满足a2=3,a7=a3+8.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案