分析 (Ⅰ)求导函数,根据导导函数和0的关系由此可得f(x)的单调性;
(Ⅱ)需要分类讨论,根据函数的单调求出函数的最值,即可求出a的范围.
解答 解:(1)f′(x)=ex-a,
若a<0,则f′(x)>0,f(x)在R递增,
若a>0,令f′(x)>0,解得;x>lna,令f′(x)<0,解得:x<lna,
∴f(x)在(-∞,lna)递减,在(lna,+∞)递增;
(2)若a>0,只需f(lna)>a2-a,即-alna>a2-a,
即lna+a-1<0,令g(a)=lna+a-1,
a>0时,g(a)递增,又g(1)=0,则0<a<1;
若a<0,则f(ln(-a))=-aln(-a)-2a,
f(ln(-a))-(a2-a)=-aln(-a)-a2-a=-a[ln(-a)+a+1]
∵ln(-a)+a+1≤0,∴-a[ln(-a)+a+1]≤0,
则f[ln(-a)]≤a2-a,不合题意,
综上,a的范围是(0,1).
点评 本题考查导数知识的运用,考查函数的单调性和最值,正确运用导数是关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com