精英家教网 > 高中数学 > 题目详情
14.小五、小一、小节、小快、小乐五位同学站成一排,若小一不出现在首位和末位,小五、小节、小乐中有且仅有两人相邻,求能满足条件的不同排法共有多少种?

分析 根据题意,按小一的位置分三类:①当小一出现在第2位时,则第1位必为小五、小节、小乐中的一位同学,②当小一出现在第3位时,则第1位、第2位为小五、小节、小乐中的两位同学或第4位、第5位为小五、小节、小乐中的两位同学,③当小一出现在第4位时,则第5位必为小五、小节、小乐中的一位同学,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.

解答 解:根据题意,按小一的位置分三类:
①当小一出现在第2位时,
则第1位必为小五、小节、小乐中的一位同学,在三人中任取1人,放在第1位,
将剩余2人看成一个整体,与小快全排列,
所以满足条件的排法数目有$C_3^1A_2^2A_2^2=12$种;
②当小一出现在第3位时,
若第1位、第2位为小五、小节、小乐中的两位同学,在三人中取出2个,安排在第1位、第2位,再将剩下的1人全小快全排列,有A33A22种排法;
若第4位、第5位为小五、小节、小乐中的两位同学,同理可得此时有A33A22种排法;
所以满足条件的排法数目有$2A_3^2A_2^2=24$种;
③当小一出现在第4位时,则第5位必为小五、小节、小乐中的一位同学,
所以满足条件的排法数目有$C_3^1A_2^2A_2^2=12$种;
综上,共有12+24+12=48种排法.

点评 本题考查排列、组合的应用,关键是依据题意,按照小一的位置进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=xa的图象过点(4,2),令${a_n}=\frac{1}{f(n+1)+f(n)}$(n∈N*),记数列{an}的前n项和为Sn,则S2017=(  )
A.$\sqrt{2018}+1$B.$\sqrt{2018}-1$C.$\sqrt{2017}-1$D.$\sqrt{2017}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且对任意正整数n,都有${a_n}=\frac{3}{4}{S_n}+2$成立.
(1)记bn=log2an,求数列{bn}的通项公式;
(2)设${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,求证:数列{cn}的前n项和Tn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为a元,侧面的材料每单位面积的价格为b元,当造价最低时,锅炉的底面直径与高的比为(  )
A.$\frac{a}{b}$B.$\frac{a^2}{b}$C.$\frac{b}{a}$D.$\frac{b^2}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数x,y满足$\left\{\begin{array}{l}x-y≥3\\ x+2y≥6\\ x≤8\end{array}\right.$,则$\frac{y}{x}$的取值范围为$[{-\frac{1}{8},\frac{5}{8}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A、B、C的对边分别为a,b,c,且2asinB-$\sqrt{5}$bcosA=0.
(1)求cosA;
(2)若a=$\sqrt{5}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四个函数中,在区间(0,1)上是减函数的是(  )
A.y=log2xB.$y=\frac{1}{x}$C.y=2xD.$y={x^{\frac{2}{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=ax-2+2(a>0,且a≠1)的图象恒过定点P,则P点的坐标是(2,3);函数g(x)=loga(x+1)-2(a>0,且a≠1)的图象恒过定点M,则M点的坐标是(0,-2).

查看答案和解析>>

同步练习册答案