精英家教网 > 高中数学 > 题目详情
若抛物线x2=2py的焦点与椭圆
x2
3
+
y2
4
=1的下焦点重合,则p的值为(  )
A、4B、2C、-4D、-2
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用椭圆和抛物线的简单性质直接求解.
解答: 解:椭圆
x2
3
+
y2
4
=1的下焦点坐标分别为(0,-1),
∵抛物线x2=2py的焦点与椭圆
x2
3
+
y2
4
=1的下焦点重合,
p
2
=-1,
∴p=-2.
故选:D.
点评:本题考查抛物线中参数的求法,是基础题,解题时要注意椭圆线和抛物线的简单性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,若a=18,b=24,A=45°,则这样的三角形有(  )
A、0个B、两个
C、一个D、至多一个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列a1=2中,a1=2,an+1=an+
1
2
(n∈N*),则a101的值(  )
A、50B、51C、52D、53

查看答案和解析>>

科目:高中数学 来源: 题型:

下列双曲线不是以2x±3y=0为渐近线的是(  )
A、
x2
9
-
y2
4
=1
B、
y2
4
-
x2
9
=1
C、
x2
4
-
y2
9
=1
D、
y2
12
-
x2
27
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

先后抛掷红、蓝两枚骰子,事件A:红骰子出现3点,事件B:蓝骰子出现的点数为奇数,则P(A|B)=(  )
A、
1
6
B、
1
3
C、
1
2
D、
5
36

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x+
1
x
(x<0)的单调递增区间为(  )
A、(-∞,-1)
B、(-1,0)
C、(-∞,0)
D、(-∞,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为锐角,且sin(α-
π
4
)=
1
3
,则sinα=(  )
A、
4+
2
6
B、
4-
2
6
C、
1+
2
3
D、
2
2
-1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

利用基本不等式求最值,下列各式运用正确的是(  )
A、y=x+
4
x
≥2
x•
4
x
=4
B、y=sinx+
4
sinx
≥2
sinx•
4
sinx
=4(x为锐角)
C、y=3x+
4
3x
≥2
3x
4
3x
=4
D、y=lgx+4logx10≥2
lgx•4logx10
=4

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥PO如图1所示,图2是它的正(主)视图.已知圆O的直径为AB,C是圆周上异于A、B的一点,D为AC的中点
(1)求该圆锥的侧面积S;
(2)求证:平面PAC⊥平面POD;
(3)若∠CAB=60°,在三棱锥A-PBC中,求点A到平面PBC的距离.

查看答案和解析>>

同步练习册答案