精英家教网 > 高中数学 > 题目详情
1.四面体ABCD的四个顶点都在球O的球面上,AB=2,BC=CD=1,∠BCD=60°,AB⊥平面BCD,则球O的表面积为(  )
A.B.$\frac{{8\sqrt{2}}}{3}π$C.$\frac{{8\sqrt{3}}}{3}π$D.$\frac{16}{3}π$

分析 由题意画出图形,设出底面三角形的外心G,找出四面体ABCD的外接球的球心O,通过求解直角三角形得到三棱锥的高,则答案可求.

解答 解:如图,∵BC=CD=1,∠BCD=60°
∴底面△BCD为等边三角形
取CD中点为E,连接BE,
∴△BCD的外心G在BE上,设为G,取BC中点F,连接GF,
在Rt△BCE中,由CE=$\frac{1}{2}$,∠CBE=30°,得BF=$\frac{1}{2}BC$=$\frac{1}{2}$,
又在Rt△BFG中,得BG=$\frac{\frac{1}{2}}{cos30°}=\frac{\sqrt{3}}{3}$,
过G作AB的平行线与AB的中垂线HO交于O,
则O为四面体ABCD的外接球的球心,即R=OB,
∵AB⊥平面BCD,∴OG⊥BG,
在Rt△BGO中,求得OB=$\sqrt{O{G}^{2}+B{G}^{2}}=\sqrt{{1}^{2}+(\frac{\sqrt{3}}{3})^{2}}=\frac{2\sqrt{3}}{3}$,
∴球O的表面积为$4π•(\frac{2\sqrt{3}}{3})^{2}=\frac{16π}{3}$.
故选:D.

点评 本题考查球的表面积的求法,是中档题,解题时要认真审题,注意构造法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=6,向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,∠AOB=θ.
(1)若θ=90°,求|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$-$\overrightarrow{b}$|;
(2)若θ=60°,求|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$-$\overrightarrow{b}$|;
(3)若θ=120°,求|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$-$\overrightarrow{b}$|;
(4)若θ确定,则|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$-$\overrightarrow{b}$|能否确定?并求当θ变化时它们的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$z=\frac{2-i}{1+i}-{i^{2016}}$(i是虚数单位),则|z|=(  )
A.2B.4C.$\frac{{\sqrt{10}}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,左、右两顶点分别为A1,A2,以A1A2为直径的圆与双曲线的一条渐近线交于点P(点P在第一象限内),若直线FP平行于另一条渐近线,则该双曲线离心率e的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=log($\sqrt{{x}^{2}+1}$+x)+$\frac{1}{{2}^{x}-1}$+1,则f(1)+f(-1)=1;如果f(loga5)=4(a>0,a≠1),那么f(${log}_{\frac{1}{a}}$5)的值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对?α∈R,n∈[0,2],向量$\overrightarrow{c}$=(2n+3cosα,n-3sinα)的长度不超过6的概率为(  )
A.$\frac{\sqrt{5}}{10}$B.$\frac{2\sqrt{5}}{10}$C.$\frac{3\sqrt{5}}{10}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中正确的是(  )
A.x=2是x2-4x+4=0的必要不充分条件
B.在△ABC中,三边a,b,c所对的角分别为A,B,C,若acosA=bcosB,则该三角形△ABC为等腰三角形
C.命题“若x2<4,则-2<x<2”的逆否命题为“若x2≥4,则x≥2或x≤-2”
D.若p∧(¬q)为假,p∨(¬q)为真,则p,q同真或同假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(ωx+φ)(ω>0)图象的两条相邻的对称轴的距离为$\frac{π}{3}$.若角φ的终边经过点P(1,-2),则f($\frac{7π}{3}$)等于(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.-$\frac{2\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线C:$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1的左右焦点分别为F1,F2,双曲线C上一点P到右焦点F2的距离是实轴两端点到右焦点距离的等差数列,O为坐标原点,则点O到直线PF2的距离为(  )
A.$\frac{6\sqrt{14}}{5}$B.$\frac{12\sqrt{14}}{5}$C.2$\sqrt{7}$D.4$\sqrt{7}$

查看答案和解析>>

同步练习册答案