精英家教网 > 高中数学 > 题目详情
20.已知集合A={x|a+1≤x≤2a+3},B={x|-x2+7x-10≥0}
(1)已知a=3,求集合(∁RA)∩B;
(2)若A?B,求实数a的范围.

分析 化简集合B,(1)计算a=3时集合A,根据补集与交集的定义;
(2)A?B时,得出关于a的不等式,求出实数a的取值范围.

解答 解:集合A={x|a+1≤x≤2a+3},
B={x|-x2+7x-10≥0}={x|x2-7x+10≤0}={x|2≤x≤5};
(1)当a=3时,A={x|4≤x≤9},
∴∁RA={x|x<4或x>9},
集合(∁RA)∩B={x|2≤x<4};
(2)当A?B时,a+1<2或2a+3>5,
解得a<1或a>1,
所以实数a的取值范围是a≠1.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知各项为正数的数列{an}的前n项和为Sn,且满足$\sqrt{2{S_n}}=\frac{{{a_n}+2}}{2}$
(Ⅰ)求证:{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{a_n}+{a_1}}}+\frac{1}{{{a_n}+{a_2}}}+…+\frac{1}{{{a_n}+{a_n}}}+\frac{1}{{{a_n}+{a_{n+1}}}}({n∈{N^*}})$,求证:${b_n}≤\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)的对称轴x=-2,f(x)的图象被x轴截得的弦长为2$\sqrt{3}$,且满足f(0)=1.
(1)求f(x)的解析式;
(2)若f(($\frac{1}{2}$)x)>k,对x∈[-1,1]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若原命题的否命题是“若x∉N,则x∉Z”,则原命题的逆否命题是真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直角三角形两条直角边长分别为a、b,且$\frac{1}{a}+\frac{2}{b}$=1,则三角形面积的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\sqrt{x(2x-1)}$的定义域是M,则∁RM=(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若b<a<0,则下列结果①a+b<ab;②|a|>|b|;③$\frac{1}{b}>\frac{1}{a}$>0;④表达式$\frac{b}{a}+\frac{a}{b}$最小值为2中,正确的结果的序号有①.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知2a=3b=6c,若$\frac{a+b}{c}$∈(k,k+1),则整数k的值是4.

查看答案和解析>>

同步练习册答案