精英家教网 > 高中数学 > 题目详情
3.已知{an}是等差数列,且a1,a2,a5成等比数列,a3+a4=12.
(1)求a1+a2+a3+a4+a5
(2)设bn=10-an,数列{bn}的前n项和为Sn,若b1≠b2,则n为何值时,Sn最大?Sn最大值是多少?

分析 (1)a1,a2,a5成等比数列,(a1+d)2=a1 (a1+4d),求得d的值,分类当d=0及d=2时,求得a1,可求得a1+a2+a3+a4+a5
(2)根据bn=10-an,求得bn=11-2n,当n≤5时,bn>0,当n≥6时,bn<0,当n=5时,Sn最大.

解答 (1)设{an}的公差为d,∵a1,a2,a5成等比数列,
∴(a1+d)2=a1 (a1+4d),∴d=0,或d=2,…(4分)
当d=0时,∵a3+a4=12,∴a1=a3=6,
∴a1+a2+a3+a4+a5=30,…(6分)
当d≠0时,∵a3+a4=12,∴a1=1,d=2,…(8分)
∴a1+a2+a3+a4+a5=25;
(2)∵b1≠b2,bn=10-an,∴a1≠a2,∴d≠0,
∴bn=10-an=10-(2n-1)=11-2n,…(12分)
当n≤5时,bn>0,当n≥6时,bn<0,
当n=5时,Sn最大,
Sn最大值是9+7+5+3+1=25…(16分)

点评 本题考查求等差数列的通项公式和前n项和公式,过程简单,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在正四面体ABCD中,E是BC边的中点,则AE与BD所成角的余弦值为$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=loga(1-x),g(x)=loga(1+x)(a>0且a≠1).
(1)设a=10,F(x)=f(x)-g(x),若函数h(x)=F(x)-x一m在[0,$\frac{9}{11}$]上恒有零点,求实数m的取值范围:
(2)若关下x的方程${a}^{g(-{x}^{2}+x+1)}$=af(m)-x有两个不等实很,求实数m的范围:
(3)若a>1且在x∈[0,1]时,f(m-2x)>$\frac{1}{2}$g(x)恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“若a2<b,则-$\sqrt{b}$<a<$\sqrt{b}$”的逆否命题为(  )
A.若a2≥b,则a≥$\sqrt{b}$或a≤-$\sqrt{b}$B.若a2≥b,则a>$\sqrt{b}$或a<-$\sqrt{b}$
C.若a≥$\sqrt{b}$或a≤-$\sqrt{b}$,则a2≥bD.若a>$\sqrt{b}$或a<-$\sqrt{b}$,则a2≥b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.运行如图程序框图若输入的n的值为3,则输出的n的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设Sn是等差数列{an}的前n项和,且满足等式S7=a5+a6+a8+a9,则$\frac{{a}_{7}}{{a}_{4}}$的值为(  )
A.$\frac{7}{4}$B.$\frac{4}{7}$C.$\frac{7}{8}$D.$\frac{8}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合M={x|x2-x-6<0},N={x|x-1>0},则M∩N=(  )
A.(1,2)B.(1,3)C.(-1,2)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线截圆M:(x-1)2+y2=1所得弦长为$\sqrt{3}$,则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{2}{3}$$\sqrt{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.点A关于点B的对称点为A′,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OA′}$=2$\overrightarrow{b}$-$\overrightarrow{a}$.

查看答案和解析>>

同步练习册答案