精英家教网 > 高中数学 > 题目详情
14.设函数f(x)=loga(1-x),g(x)=loga(1+x)(a>0且a≠1).
(1)设a=10,F(x)=f(x)-g(x),若函数h(x)=F(x)-x一m在[0,$\frac{9}{11}$]上恒有零点,求实数m的取值范围:
(2)若关下x的方程${a}^{g(-{x}^{2}+x+1)}$=af(m)-x有两个不等实很,求实数m的范围:
(3)若a>1且在x∈[0,1]时,f(m-2x)>$\frac{1}{2}$g(x)恒成立,求实数m的范围.

分析 (1)判定h(x)是定义域上的减函数,得h(x)是[0,$\frac{9}{11}$]上的减函数;由题意h(0)•h($\frac{9}{11}$)<0,从而求出m的取值范围.
(2)根据指数方程的性质,构造函数,结合一元二次函数根与判别式△之间的关系进行求解即可.
(3)将不等式进行转化,构造函数结合参数分离法求出函数的最值即可.

解答 解:∵f(x)=lg$\frac{1-x}{1+x}$,
∴$\frac{1-x}{1+x}$>0,即-1<x<1;
又f′(x)=$\frac{1+x}{1-x}$×$\frac{1}{ln10}$×$\frac{-(1+x)-(1-x)}{{(1+x)}^{2}}$<0,
∴f(x)是定义域上的减函数;
∴g(x)=f(x)-x-m在[0,$\frac{9}{11}$]上是减函数;
且g(0)=-m,g($\frac{9}{11}$)=lg$\frac{1-\frac{9}{11}}{1+\frac{9}{11}}$-$\frac{9}{11}$-m=-1-$\frac{9}{11}$-m=-$\frac{20}{11}$-m;
由题意g(0)•g($\frac{9}{11}$)<0,
即(-m)•(-$\frac{20}{11}$-m)<0,
解得-$\frac{20}{11}$<m<0;
∴m的取值范围是{m|-$\frac{20}{11}$<m<0}.
解:(1)a=10,F(x)=f(x)-g(x)=lg(1-x)-lg(1+x)=lg$\frac{1-x}{1+x}$,
∴$\frac{1-x}{1+x}$>0,即-1<x<1;
又F′(x)=$\frac{1+x}{1-x}$×$\frac{1}{ln10}$×$\frac{-(1+x)-(1-x)}{{(1+x)}^{2}}$<0,
F(x)是定义域上的减函数;
∴h(x)=f(x)-x-m在[0,$\frac{9}{11}$]上是减函数;
且g(0)=-m,h($\frac{9}{11}$)=lg$\frac{1-\frac{9}{11}}{1+\frac{9}{11}}$-$\frac{9}{11}$-m=-1-$\frac{9}{11}$-m=-$\frac{20}{11}$-m;
由题意h(0)•h($\frac{9}{11}$)<0,
即(-m)•(-$\frac{20}{11}$-m)<0,
解得-$\frac{20}{11}$<m<0;
∴m的取值范围是{m|-$\frac{20}{11}$<m<0}.
(2)g(-x2+x+1)=loga(-x2+x+2),f(m)=loga(1-m),
原方程有两个不等实根即-x2+x+2=1-m,有两个不等实根,
其中$\left\{\begin{array}{l}{-{x}^{2}+x+2>0}\\{1-m>0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-1<x<2}\\{m<1}\end{array}\right.$,
即x2-2x-1-m=0在x∈(-1,2)上有两个不等实根.
记h(x)=x2-2x-1-m,对称轴x=1,
由$\left\{\begin{array}{l}{h(-1)>0}\\{h(2)>0}\\{△=4+4(1+m)>0}\end{array}\right.$,解得-2<m<-1;
(3)f(m-2x)=loga(1-m+2x),
即a>1且x∈[0,1]时,loga(1-m+2x)$\frac{1}{2}$loga(1+x),恒成立,
∴x∈[0,1]有,$\left\{\begin{array}{l}{1-m+2x>0,①}\\{1-m+2x>\sqrt{1+x},②}\end{array}\right.$恒成立,
由①得m<1; 
令$\sqrt{1+x}$=t,(t∈[1,$\sqrt{2}$]),
∴由②得2t2-t-1>m在t∈[1,$\sqrt{2}$]时恒成立,
记q(t)=2t2-t-1,
即q(t)min>m,∵q(t)min=q(1)=0>m,;
综上m<0.

点评 本题主要考查不等式恒成立问题,构造函数,利用参数分离法以及函数与方程之间的关系进行转化是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\frac{1}{{4}^{x}+1}$图象的对称中心为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.圆x2+y2-2x-2y+1=0上的点到直线x-y=2的距离的最大值是$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}中,a2=5,S5=40.等比数列{bn}中,b1=3,b4=81,
(1)求{an}和{bn}的通项公式   
(2)令cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某中学从高三甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩如下:
甲班:92,80,79,78,85,96,85
乙班:81,91,91,76,81,92,83
(Ⅰ)若竞赛成绩在90分以上的视为“优秀生”,则从“优秀生”中任意选出2名,乙班恰好只有1名的概率是多少?
(Ⅱ)根据两组数据完成两班数学竞赛成绩的茎叶图,指出甲班学生成绩的众数,乙班学生成绩中位数,并请你利用所学的平均数、方差的知识分析一下两个班学生的竞赛成绩情况.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若(2x-1)2016=a0+a1x+…+a2016x2016(x∈R),则$\frac{1}{2}$+$\frac{{a}_{2}}{{2}^{2}{a}_{1}}$+$\frac{{a}_{3}}{{2}^{3}{a}_{1}}$+…+$\frac{{a}_{2016}}{{2}^{2016}{a}_{1}}$=(  )
A.-$\frac{1}{2015}$B.$\frac{1}{2016}$C.-$\frac{1}{4030}$D.$\frac{1}{4032}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列不等式成立的是(  )
A.若a>b>0,则$\frac{b}{a}$>$\frac{b+1}{a+1}$B.若a>b>0,则lg$\frac{a+b}{2}$<$\frac{lga+lgb}{2}$
C.若a>b>0,则a+$\frac{1}{b}$>b+$\frac{1}{a}$D.若a>b>0,则$\sqrt{a}-\sqrt{b}$>$\sqrt{a-b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知{an}是等差数列,且a1,a2,a5成等比数列,a3+a4=12.
(1)求a1+a2+a3+a4+a5
(2)设bn=10-an,数列{bn}的前n项和为Sn,若b1≠b2,则n为何值时,Sn最大?Sn最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在正三棱柱ABC-A1B1C1中,AB=$\sqrt{2}$AA1,求证:BC1=AB1

查看答案和解析>>

同步练习册答案