精英家教网 > 高中数学 > 题目详情
14.如果函数f(x)=x2+2ax+2在区间[2,+∞)上单调递增,那么实数a的值范围是[-2,+∞).

分析 根据二次函数的图象和性质,可得a≥-2,从而得出结论.

解答 解:由于二次函数y=x2+2ax+2的图象是开口向上的抛物线,其对称轴为x=-a,
且函数f(x)=x2+2ax+2在区间[2,+∞)上]上是单调递增函数,
故有-a≤2,则实数a的取值范围为:[-2,+∞).
故答案为:[-2,+∞).

点评 本题主要考查二次函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若$\frac{cos2α}{{cos(α-\frac{π}{4})}}=-\frac{1}{2},则sinα-cosα$等于(  )
A.$-\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知|z|=1,则$|{z-1+\sqrt{3}i}|$的取值范围是[-1,3]..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线l:2x+4y+3=0,P为l上的动点,O是坐标原点,若点Q满足:2$\overrightarrow{OQ}=\overrightarrow{QP}$,则点Q的轨迹方程是(  )
A.2x+4y+1=0B.2x+4y+3=0C.2x+4y+2=0D.x+2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.老师有同样的作文练习2本,同样的英语练习3本,从中取出4本送给4位学生,每位学生1本,则不同的送法共有(  )
A.4种B.10种C.18种D.20种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若关于x的不等式ex-(a+1)x-b≥0(e为自然对数的底数)在R上恒成立,则(a+1)b的最大值为(  )
A.e+1B.e+$\frac{1}{2}$C.$\frac{e}{2}$D.$\frac{e}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)求不等式的解集:-x2+4x+5<0.
(2)解不等式|x-8|-|x-4|>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线l经过椭圆$\frac{x^2}{a^2}+\frac{y^2}{3}=1({a>\sqrt{3}})$的一个焦点和一个顶点,若椭圆中心到l的距离为其短轴长的$\frac{1}{4}$,则该椭圆的长轴长为(  )
A.$\frac{8}{3}$B.4C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若{x|x2≤a,a∈R}∪∅=∅,则a的取值范围是(  )
A.[0,+∞)B.(0,+∞)C.(-∞,0]D.(-∞,0)

查看答案和解析>>

同步练习册答案