精英家教网 > 高中数学 > 题目详情
7.设等比数列{an}的前n项和为Sn,前n项的倒数之和为Tn,则$\frac{{S}_{n}}{{T}_{n}}$=a1an

分析 由等比数列的性质得到a1an=a2an-1=a3an-2=…=ana1,变形为                                                                            $\frac{{a}_{1}}{\frac{1}{{a}_{n}}}=\frac{{a}_{2}}{\frac{1}{{a}_{n-1}}}=\frac{{a}_{3}}{\frac{1}{{a}_{n-2}}}=…\frac{{a}_{n}}{\frac{1}{{a}_{1}}}={a}_{1}{a}_{n}$,然后利用合比定理得答案.

解答 解:∵数列{an}为等比数列,∴a1an=a2an-1=a3an-2=…=ana1
∴$\frac{{a}_{1}}{\frac{1}{{a}_{n}}}=\frac{{a}_{2}}{\frac{1}{{a}_{n-1}}}=\frac{{a}_{3}}{\frac{1}{{a}_{n-2}}}=…\frac{{a}_{n}}{\frac{1}{{a}_{1}}}={a}_{1}{a}_{n}$,
∴$\frac{{S}_{n}}{{T}_{n}}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{\frac{1}{{a}_{n}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{1}}}={a}_{1}{a}_{n}$.
故答案为:a1an

点评 本题主要考查等比数列的概念、等比数列的性质,考查了等比数列的前n项和,合比定理的应用是解决该题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.四面体的一条棱长为x,余下的棱长均为1.
(1)把四面体的体积V表示为x的函数f(x)并求出定义域;
(2)求体积V的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=3sin($\frac{π}{4}$-2x)的周期、最大值、单调区间、对称轴及对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f′(x)为f(x)的导函数,f″(x)是f′(x)的导函数,如果f(x)同时满足下列条件:①存在x0,使f″(x0)=0;②存在ε>0,使f′(x)在区间(x0-ε,x0)单调递增,在区间(x0,x0+ε)单调递减.则称x0为f(x)的“上趋拐点”;
如果f(x)同时满足下列条件:①存在x0,使f″(x0)=0;②存在ε>0,使f′(x)在区间(x0-ε,x0)单调递减,在区间(x0,x0+ε)单调递增.则称x0为f(x)的“下趋拐点”.
给出以下命题,其中正确的是①③④(只写出正确结论的序号)
①0为f(x)=x3的“下趋拐点”;
②f(x)=x2+ex在定义域内存在“上趋拐点”;
③f(x)=ex-ax2在(1,+∞)上存在“下趋拐点”,则a的取值范围为($\frac{e}{2}$,+∞);
④f(x)=$\frac{1}{3}a{x^3}-\frac{1}{2}a(a-1){x^2}-{a^2}x+1$,若a为f(x)的“上趋拐点”,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且$\overrightarrow{OG}•\overrightarrow{BC}$=5,则△ABC的形状是(  )
A.锐角三角形B.钝角三角形
C.直角三角形D.上述三种情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在正方体ABCD-A1B1C1D1中,E为棱CC1的中点
(Ⅰ)求证:平面A1ED⊥平面EBD;
(Ⅱ)求二面角A1-DE-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,a1=2,且当n≥2时,满足2an=Sn+n.
(1)求a2,a3的值;
(2)求数列{an}的通项公式;
(3)设bn=n(an+1)(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若$\frac{5}{2}$π<α<$\frac{11}{4}$π,sin2α=-$\frac{4}{5}$,求tan$\frac{α}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=2x-1,把区间[0,10]分成10等份,求区间端点及各等分点处的函数值,画出解决该问题的程序框图.

查看答案和解析>>

同步练习册答案