精英家教网 > 高中数学 > 题目详情
2.在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且$\overrightarrow{OG}•\overrightarrow{BC}$=5,则△ABC的形状是(  )
A.锐角三角形B.钝角三角形
C.直角三角形D.上述三种情况都有可能

分析 在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,运用重心和外心的性质,运用向量的三角形法则和中点的向量形式,以及向量的平方即为模的平方,可得${\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2}=-30$,又BC=5,则有|$\overrightarrow{AB}$|2=|$\overrightarrow{AC}$|2+$\frac{6}{5}$|$\overrightarrow{BC}$|2>|$\overrightarrow{AC}$|2+|$\overrightarrow{BC}$|2,运用余弦定理即可判断三角形的形状.

解答 解:在△ABC中,G,O分别为△ABC的重心和外心,
取BC的中点为D,连接AD、OD、GD,如图:
则OD⊥BC,GD=$\frac{1}{3}$AD,
∵$\overrightarrow{OG}=\overrightarrow{OD}+\overrightarrow{DG}$,$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,
由$\overrightarrow{OG}•\overrightarrow{BC}$=5,
则($\overrightarrow{OD}+\overrightarrow{DG}$)$•\overrightarrow{BC}$=$\overrightarrow{DG}•\overrightarrow{BC}$
=-$\frac{1}{6}$$(\overrightarrow{AB}+\overrightarrow{AC})$•$\overrightarrow{BC}$=5,
即-$\frac{1}{6}(\overrightarrow{AB}+\overrightarrow{AC})$•($\overrightarrow{AC}-\overrightarrow{AB}$)=5,
则${\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2}=-30$,
又BC=5,
则有|$\overrightarrow{AB}$|2=|$\overrightarrow{AC}$|2+$\frac{6}{5}$|$\overrightarrow{BC}$|2>|$\overrightarrow{AC}$|2+|$\overrightarrow{BC}$|2
由余弦定理可得cosC<0,
即有C为钝角.
则三角形ABC为钝角三角形.
故选:B.

点评 本题考查向量的数量积的性质和运用,主要考查向量的三角形法则和向量的平方即为模的平方,运用余弦定理判断三角形的形状是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.直线a∥b,b⊥c,则a与c的关系是(  )
A.异面B.平行C.垂直D.相交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解不等式:2<ex+$\frac{1}{{e}^{x}}$<2b-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正方体ABCD-A1B1C1D1,如图
(1)求证:平面AB1D1∥平面C1BD;
(2)试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F.并证明:A1E=EF=FC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在长方体ABCD-A1B1C1D1中,AA1=1,AB=BC=2,若M为四面体C1BCD内的点(包含边界),则直线A1M与平面A1B1C1D1所成角的余弦值的余弦的最小值为(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设等比数列{an}的前n项和为Sn,前n项的倒数之和为Tn,则$\frac{{S}_{n}}{{T}_{n}}$=a1an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某企业开发了一种新产品,为尽快打开市场,市场部针对该产品的销售价位调查了2000人,并把该产品的销售价位画成如图所示的频率分布直方图,为制定具体的销售价格,计划用分层抽样的方法从调查的人中抽出n人作进一步调查,已知心理销售价位定位于30元至35元之间的人数为12,则n=80.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a∈R,函数f(x)=(-x2+ax)•ex
(1)a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在复平面内,到复数-$\frac{1}{3}$+3i对应的点F的距离与到直线l:3z+3$\overline{z}$+2=0的距离相等的点的轨迹是(  )
A.抛物线B.双曲线C.椭圆D.直线

查看答案和解析>>

同步练习册答案