精英家教网 > 高中数学 > 题目详情
18.如图,已知AB为半圆O的直径,C为圆弧上一点,过点C作半圆的切线CF,过点A作CF的垂线,垂足为D,AD交半圆于点E,连结EC,BC,AC.
(Ⅰ)证明:AC平分∠BAD;
(Ⅱ)若AB=3,DE=$\frac{3}{4}$,求△ABC的面积.

分析 (Ⅰ)证明∠BAC=∠CAD,即可证明:AC平分∠BAD;
(Ⅱ)证明△DCE∽△CAB,则$\frac{DE}{CE}=\frac{CB}{AB}$,求出BC,即可求△ABC的面积.

解答 (Ⅰ)证明:由CD为半圆O的切线,根据弦切角定理得∠DCA=∠CBA,
又因为∠CDA=∠BCA=90°,得∠BAC=∠CAD,
所以AC平分∠BAD;…(5分)
(Ⅱ)解:由CD为半圆O的切线,根据弦切角定理得∠DCE=∠CDA,
又因为∠CAD=∠CAB,所以∠DCE=∠CAB,
可得△DCE∽△CAB,则$\frac{DE}{CE}=\frac{CB}{AB}$,
又因为EC=BC,AB=3,DE=$\frac{3}{4}$,
所以BC=$\frac{3}{2}$,即S△ABC$\frac{9\sqrt{3}}{8}$.…(10分)

点评 本题考查弦切角定理,考查三角形相似的判定,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=lnx-$\frac{1}{2}a{x^2}+x({a>-\frac{1}{4}})$.
(Ⅰ)若函数f(x)在点(1,f(1))处的切线与直线y=x平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当a=0,m>0时,方程2mf(x)=x2有唯一实数解,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在自然数列1,2,3,…,n中,任取k个元素位置保持不动,将其余n-k个元素变动位置,得到不同的新数列.由此产生的不同新数列的个数记为Pn(k).
(1)求P3(1)
(2)求$\sum_{k=0}^{4}$P4(k);
(3)证明$\sum_{k=0}^{n}$kPn(k)=n$\sum_{k=0}^{n-1}$Pn-1(k),并求出$\sum_{k=0}^{n}$kPn(k)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正数x,y满足xy+x+2y=6,则xy的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若对任意x∈[1,2],不等式4x-a•2x+1+a2-1>0恒成立,则实数a的取值范围是(-∞,1)∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的内角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(2sin$\frac{A}{2}$,cosA),$\overrightarrow{n}$=(1-2sin2$\frac{A}{4}$,-$\sqrt{15}$),且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(Ⅰ)求角A的余弦值;
(Ⅱ)若a=$\sqrt{6}$,求△ABC的面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=(1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$-$\frac{x^4}{4}$+…-$\frac{{{x^{2012}}}}{2012}$+$\frac{{{x^{2013}}}}{2013}$-$\frac{{{x^{2014}}}}{2014}$+$\frac{{{x^{2015}}}}{2015}}$)cos2x在区间[-3,3]上零点的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“α为第一象限角”是“$\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$≥2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=sinα(sinα-cosα)(α∈[-$\frac{π}{2}$,0])的最大值为$\frac{1}{2}+\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

同步练习册答案