精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=log(2-x)+1(m>0,且m≠1)的图象恒过点P,且点P在直线ax+by=1,a,b∈R上,那么ab的最大值为$\frac{1}{4}$.

分析 函数f(x)恒过(1,1),可得a+b=1.代入利用二次函数的单调性即可得出.

解答 解:函数f(x)恒过(1,1),
∴a+b=1.
∴$ab=a(1-a)=-{(a-\frac{1}{2})^2}+\frac{1}{4}$,
故最大值为:$\frac{1}{4}$.

点评 本题考查了直线的方程、二次函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.某学校高一、高二、高三年级的学生人数分别为900、900、1200人,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取的学生人数为20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn,且Sn=$\frac{n(n+1)}{2}$.
(1)求数列{an}的通项公式;
(2)令bn=2${\;}^{{a}_{n}}$+$\frac{2}{{a}_{n}{a}_{n+1}}$(n=1,2,3,…),其前n项和为Tn,如果对任意的n∈N*,都有Tn+2t≥t2成立,求Tn的表达式及实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于下列命题:
①若关于x的不等式ax2+2ax+1>0恒成立,则a∈(0,1);
②已知函数f(x)=log2$\frac{a-x}{1+x}$为奇函数,则实数a的值为1;
③设a=sin$\frac{2014π}{3},b=cos\frac{2014π}{3},c=tan\frac{2014π}{3}$,则a<b<c;
④已知P为三角形ABC内部任一点(不包括边界),满足$({\overrightarrow{PB}-\overrightarrow{PA}})•({\overrightarrow{PB}+\overrightarrow{PA}-2\overrightarrow{PC}})=0,则△ABC$必定是等腰三角形.
其中正确命题的序号是②③④(请将所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线y=4x-x3,在点(-1,-3)处的切线方程是(  )
A.y=7x+4B.y=x-4C.y=7x+2D.y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=ax2-4x+c的值域为[1,+∞),则$\frac{1}{c-1}+\frac{9}{a}$的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简下列各式:
(1)$(2{a^{\frac{2}{3}}}{b^{\frac{1}{2}}})(-6{a^{\frac{1}{2}}}{b^{\frac{1}{3}}})÷(-3{a^{\frac{1}{6}}}{b^{\frac{5}{6}}})$.
(2)$(\root{3}{25}-\sqrt{125})÷\root{4}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.点N是圆(x+5)2+y2=1上的动点,以点A(3,0)为直角顶点的Rt△ABC另外两顶点B、C,在圆x2+y2=25上,且BC的中点为M,则|MN|的最大值为$\frac{15+\sqrt{23}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足a1=1,${a_{n+1}}=\frac{a_n}{{2{a_n}+1}},n∈{N^*}$.
(1)证明:数列$\{\frac{1}{a_n}\}$是等差数列,并求数列{an}的通项公式;
(2)设${b_n}=\frac{a_n}{2n+1}$,数列{bn}的前n项和为Sn,求使不等式Sn<k对一切n∈N*恒成立的实数k的范围.

查看答案和解析>>

同步练习册答案