如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1,AD的中点,那么异面直线OE与FD1所成角的余弦值等于( )
![]()
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
给出下列命题,其中正确的两个命题是( )
①直线上有两点到平面的距离相等,则此直线与平面平行;②夹在两个平行平面间的两条异面线段的中点连线平行于这两个平面;③直线m⊥平面α,直线n⊥直线m,则n∥α;④a,b是异面直线,则存在唯一的平面α,使它与a,b都平行且与a,b的距离相等.
A.①与② B.②与③
C.③与④ D.②与④
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD为长方形,AD=2AB,点E、F分别是线段PD、PC的中点.
(1)证明:EF∥平面PAB;
(2)在线段AD上是否存在一点O,使得BO⊥平面PAC,若存在,请指出点O的位置,并证明BO⊥平面PAC;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=2AB=4.
(1)根据已经给出的此四棱锥的主视图,画出其俯视图和左视图.![]()
![]()
(2)证明:平面PAD⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
若直线l不平行于平面α,且l⃘α,则( )
A.α内的所有直线与l异面
B.α内不存在与l平行的直线
C.α内存在唯一的直线与l平行
D.α内的直线与l都相交
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在几何体P-ABCD中,四边形ABCD为矩形,PA⊥平面ABCD,AB=PA=2.
![]()
(1)当AD=2时,求证:平面PBD⊥平面PAC;
(2)若PC与AD所成的角为45°,求几何求P-ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
空间中,下列命题正确的是( )
A.若a∥α,b∥a,则b∥α
B.若a∥α,b∥α,aβ,bβ,则β∥α
C.若α∥β,b∥α,则b∥β
D.若α∥β,aα,则a∥β
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com