如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD为长方形,AD=2AB,点E、F分别是线段PD、PC的中点.
(1)证明:EF∥平面PAB;
(2)在线段AD上是否存在一点O,使得BO⊥平面PAC,若存在,请指出点O的位置,并证明BO⊥平面PAC;若不存在,请说明理由.
![]()
科目:高中数学 来源: 题型:
已知m、n是两条不同直线,α、β、γ是三个不同平面,下列命题中正确的是( )
A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥β
C.若m∥α,m∥β,则α∥β D.若m⊥α,n⊥α,则m∥n
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,多面体ABC-A1B1C1中,三角形ABC是边长为4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4.
![]()
(1)若O是AB的中点,求证:OC1⊥A1B1;
(2)在线段AB1上是否存在一点D,使得CD∥平面A1B1C1?若存在,确定点D的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.
(1)求证:BM∥平面ADEF;
(2)求证:平面BDE⊥平面BEC.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点.
![]()
(1)求证:DF⊥AP.
(2)在线段AD上是否存在点G,使GF⊥平面PBC?若存在,说明G点的位置,并证明你的结论;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
如下的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
![]()
![]()
(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1,AD的中点,那么异面直线OE与FD1所成角的余弦值等于( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
设l是直线,α,β是两个不同的平面( )
A.若l∥α,l∥β,则α∥β B.若l∥α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l⊥β D.若α⊥β,l∥α,则l⊥β
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com