精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在[-1,1]上的奇函数,对于任意x1,x2∈[-1,1],x1≠x2总有
f(x1)-f(x2)
x1-x2
>0且f(1)=1.若对于任意a∈[-1,1],存在x∈[-1,1],使f(x)≤t2-2at-1成立,则实数t的取值范围是(  )
A、-2≤t≤2
B、t≤-1-
3
或t≥
3
+1
C、t≤0或t≥2
D、t≥2或t≤-2或t=0
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:由条件先判断函数的单调性,利用奇偶性和单调性的性质将不等式转化f(x)min≤t2-2at-1成立,构造函数g(a)即可得到结论.
解答: 解:∵f(x)是定义在[-1,1]上的奇函数,
∴当x1、x2∈[-1,1],且x1+x2≠0时,有
f(x1)-f(x2)
x1-x2
>0,
∴函数f(x)在[-1,1]上单调递增.
∵f(1)=1,
∴f(x)的最小值为f(-1)=-f(1)=-1,最大值为f(1)=1,
若对于任意a∈[-1,1],存在x∈[-1,1],使f(x)≤t2-2at-1成立,
即t2-2at-1≥-1对所有a∈[-1,1]恒成立,
∴t2-2at≥0,
设g(a)=t2-2at=-2ta+t2
则满足
g(1)=t2-2t≥0
g(-1)=t2+2t≥0

t≥2或t≤0
t≥0或t≤-2

∴t≥2或t≤-2或t=0,
故选:D
点评:本题主要考查函数奇偶性和单调性的应用,利用条件判断函数的单调性是解决本题的关键,综合考查函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2y-4=0,直线l:mx-y+1-m=0.
(1)判断直线l与圆C的位置关系;
(2)若直线l与圆C交于不同的两点A、B,且|AB|=3
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-2lnx-
a
x
+1,g(x)=ex(2lnx-x).
(1)若函数f(x)在定义域上是增函数,求a的取值范围;
(2)求g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=
2
1
2xdx,则(ax-
1
x
6的展开式中常数项为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-mx+1的图象为曲线C,若曲线C不存在与直线y=
1
2
x垂直的切线,则实数m的取值范围是(  )
A、m>2
B、m>-
1
2
C、m≤2
D、m≤-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:x2-3x-4≤0,条件q:x2-6x+9-m2≤0.若p是q的充分不必要条件,则m的取值范围是(  )
A、[-1,1]
B、[-4,4]
C、(-∞,-4]∪[4,+∞)
D、(-∞,-1]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

y=sin(
π
2
x
)是奇函数
 
.(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

π
6
是函数f(x)=sin(2x+φ)(|φ|<
π
2
)的一个零点,则函数f(x)在区间(0,2π)内所有极值点之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(x?R,A>0,ω>0,0<φ<
π
2
)的部分图象如图所示P是图象的最高点,Q为图象与x轴的交点,O为坐标原点.若OQ=4,OP=
5
,PQ=
13

(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)的图象向右平移2个单位后得到函数y=g(x)的图象,当x∈(-1,2)时,求函数h(x)=f(x)•g(x)的值域.

查看答案和解析>>

同步练习册答案