精英家教网 > 高中数学 > 题目详情
y=sin(
π
2
x
)是奇函数
 
.(判断对错)
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:根据函数的定义域关于原点对称,函数的奇偶性的定义,作出判断.
解答: 解:由于y=sin(
π
2
x
)的定义域为R,定义域关于原点对称,且sin[
π
2
(-x)]=-sin
π
2
x,故函数y=sin(
π
2
x
)为奇函数,
故答案为:对.
点评:本题主要考查正弦函数的奇偶性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(m,3),
b
(2,-1)
(1)若
a
b
的夹角为钝角,求m的范围
(2)若
a
b
的夹角为锐角,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若对?x1∈(0,2],?x2∈[1,2],使4x1lnx1-x12+3+4x1x22+8ax1x2-16x1≥0成立,则a的取值范围是(  )
A、[-
1
8
,+∞)
B、[
25-8ln2
16
,+∞)
C、[-
1
8
5
4
]
D、[-∞,
5
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的奇函数,对于任意x1,x2∈[-1,1],x1≠x2总有
f(x1)-f(x2)
x1-x2
>0且f(1)=1.若对于任意a∈[-1,1],存在x∈[-1,1],使f(x)≤t2-2at-1成立,则实数t的取值范围是(  )
A、-2≤t≤2
B、t≤-1-
3
或t≥
3
+1
C、t≤0或t≥2
D、t≥2或t≤-2或t=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,m2+1},B={2,4},则“m=
3
”是“A∩B={4}”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对边长分别为a、b、c,若a=5,b=8,B=60°,则c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ex(mx2+x+1),且曲线y=f(x)在x=1处的切线与x轴平行.
(1)求m的值及f(x)的极值;
(2)证明:当α,β∈[0,
π
2
]时,f(cosα)-f(sinβ)≤e-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+1|+|x-a|-2
(a∈R)

(1)若a=3,解不等式f(x)≥2;
(2)若f(x)的定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinωx(0<ω<2)在区间[0,
π
3
]上单调递增,在区间[
π
3
π
2
]上单调递减,则ω等于
 

查看答案和解析>>

同步练习册答案