精英家教网 > 高中数学 > 题目详情
4.已知全集U=R,若A={x|x<0},B={x|x≥2},则CR(A∪B)={x|0≤x<2}.

分析 求出A与B的并集,找出并集的补集即可.

解答 解:∵A={x|x<0},B={x|x≥2},
∴A∪B={x|x<0或x≥2},
∵全集U=R,
∴∁R(A∪B)={x|0≤x<2},
故答案为:{x|0≤x<2}

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.近两年双11网购受到广大市民的热捧.某网站为了答谢老顾客,在双11当天零点整,每个金冠买家都可以免费抽取200元或者500元代金券一张,中奖率分别是$\frac{2}{3}$和$\frac{1}{3}$.每人限抽一次,100%中奖.小张,小王,小李,小赵四个金冠买家约定零点整抽奖.
(I)试求这4人中恰有1人抽到500元代金券的概率;
(Ⅱ)这4人中抽到200元、500元代金券的人数分别用X、Y表示,记ξ=XY,求随机变量ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,且$asinB-\sqrt{3}bcosA=0$.
(1)若cosC=$\frac{4}{5}$,求cos(A+C);
(2)若b+c=5,A=$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线y=$\sqrt{11}$x与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A、B两点,若椭圆上存在点P,使得△ABP是等边三角形,则椭圆C的离心率e=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}(x>0)}\\{f(-x)+1(x<0)}\end{array}\right.$,则f(-2)=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.复数z1=2sin$θ-\sqrt{3}i$,z2=1+(2cosθ)i,i为虚数单位,θ∈[$\frac{π}{3},\frac{π}{2}$];
(1)若z1•z2是实数,求cos2θ的值;
(2)若复数z1、z2对应的向量分别是$\overrightarrow{a}$、$\overrightarrow{b}$,存在θ使等式($λ\overrightarrow{a}-\overrightarrow{b}$)•($\overrightarrow{a}-λ\overrightarrow{b}$)=0成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,M为短轴端点,且S${\;}_{M{F}_{1}{F}_{2}}$=4,离心率为$\frac{\sqrt{2}}{2}$,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条射线,与椭圆C分别交于A,B两点,且满足|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|.证明:点O到直线AB的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤0\\-\frac{1}{2}x+1,x>0\end{array}\right.$,则f[f(-1)]=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某市教育与环保部门联合组织该市中学参加市中学生环保知识团体竞赛,根据比赛规则,某中学选拔出8名同学组成参赛队,其中初中学部选出的3名同学有2名女生;高中学部选出的5名同学有3名女生,竞赛组委会将从这8名同学中随机选出4人参加比赛.
(Ⅰ)设“选出的4人中恰有2名女生,而且这2名女生来自同一个学部”为事件A,求事件A的概率P(A);
(Ⅱ)设X为选出的4人中女生的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案