精英家教网 > 高中数学 > 题目详情
3.下列命题中,正确的是(  )
A.若|$\overrightarrow{a}$|=0,则$\overrightarrow{a}$=0B.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$
C.若$\overrightarrow{a}$与$\overrightarrow{b}$是平行向量,则|$\overrightarrow{a}$|=|$\overrightarrow{b}$|D.若$\overrightarrow{a}$=$\overrightarrow{0}$,则-$\overrightarrow{a}$=$\overrightarrow{0}$

分析 区分0与$\overrightarrow{0}$判断A;举例说明B,C错误;由$\overrightarrow{0}$及互为相反向量的概念判断D.

解答 解:对于A,若|$\overrightarrow{a}$|=0,则$\overrightarrow{a}$=$\overrightarrow{0}$,故A错误;
对于B,$\overrightarrow{a}=(1,0),\overrightarrow{b}=(0,1)$,有|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,但$\overrightarrow{a}$≠$\overrightarrow{b}$且$\overrightarrow{a}$≠-$\overrightarrow{b}$,故B错误;
对于C,$\overrightarrow{a}=(1,1),\overrightarrow{b}=(2,2)$,$\overrightarrow{a}∥\overrightarrow{b}$,但$|\overrightarrow{a}|≠|\overrightarrow{b}|$,故C错误;
对于D,若$\overrightarrow{a}=\overrightarrow{0}$,则$-\overrightarrow{a}=\overrightarrow{0}$,故D正确.
故选:D.

点评 本题考查了平行向量与共线向量,考查了向量的模,是基础的概念题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.(x2+2)($\frac{1}{{x}^{2}}$-mx)5的展开式中x2项的系数490,则实数m的值为±$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某种电路开关闭合后会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和绿灯的概率都是$\frac{1}{2}$.从开关第二次闭合起,若前次出现红灯,则下一次出现红灯的概率是$\frac{1}{3}$,出现绿灯的概率是$\frac{2}{3}$;若前次出现绿灯,则下一次出现红灯的概率是$\frac{3}{5}$,出现绿灯的概率是$\frac{2}{5}$.问:
(Ⅰ)第二次闭合后出现红灯的概率是多少?
(Ⅱ)开关闭合10次时,出现绿灯的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{5π}{6}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{1}{2}$,动点C满足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,给出以下命题:
①若x+y=1,则点C的轨迹是直线;
②若|x|+|y|=1,则点C的轨迹是矩形;
③若xy=1,则点C的轨迹是抛物线;
④若$\frac{x}{y}$=1,则点C的轨迹是直线;
⑤若x2+y2+xy=1,则点C的轨迹是圆.
以上命题正确的是①②⑤(写出你认为正确的所有命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,圆C2:x2+y2=2,若存在直线l与椭圆C1和C2各有且只有一个交点,则称直线l为椭圆C1和C2的公切线.
(1)若椭圆C1和C2的公切线存在,求椭圆C1的焦距取值范围;
(2)若椭圆C1和C2的公切线存在,且公切线与椭圆C1和C2的交点分别为A,B,求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆F1:(x+1)2+y2=8,点F2(1,0),点Q在圆F1上运动,QF2的垂直平分线交QF1于点P.
(1)求动点P的轨迹的方程C;
(2)设M,N分别是曲线C上的两个不同点,且点M在第一象限,点N在第三象限,若$\overrightarrow{OM}+2\overrightarrow{ON}=2\overrightarrow{O{F_1}}$,O为坐标原点,求直线MN的斜率;
(3)过点$S({0,-\frac{1}{3}})$的动直线l交曲线C于A,B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知在△ABC中,三个内角∠A、∠B、∠C所对的边为a、b、c,且a=5,b=8,∠C=60°,求$\overrightarrow{BC}$•$\overrightarrow{CA}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\frac{{x}^{2}+8}{\sqrt{{x}^{2}+2}}$的最小值为$2\sqrt{6}$.

查看答案和解析>>

同步练习册答案