12£®ÒÑÖªÔ²F1£º£¨x+1£©2+y2=8£¬µãF2£¨1£¬0£©£¬µãQÔÚÔ²F1ÉÏÔ˶¯£¬QF2µÄ´¹Ö±Æ½·ÖÏß½»QF1ÓÚµãP£®
£¨1£©Ç󶯵ãPµÄ¹ì¼£µÄ·½³ÌC£»
£¨2£©ÉèM£¬N·Ö±ðÊÇÇúÏßCÉϵÄÁ½¸ö²»Í¬µã£¬ÇÒµãMÔÚµÚÒ»ÏóÏÞ£¬µãNÔÚµÚÈýÏóÏÞ£¬Èô$\overrightarrow{OM}+2\overrightarrow{ON}=2\overrightarrow{O{F_1}}$£¬OÎª×ø±êÔ­µã£¬ÇóÖ±ÏßMNµÄбÂÊ£»
£¨3£©¹ýµã$S£¨{0£¬-\frac{1}{3}}£©$µÄ¶¯Ö±Ïßl½»ÇúÏßCÓÚA£¬BÁ½µã£¬ÔÚyÖáÉÏÊÇ·ñ´æÔÚ¶¨µãT£¬Ê¹ÒÔABΪֱ¾¶µÄÔ²ºã¹ýÕâ¸öµã£¿Èô´æÔÚ£¬Çó³öµãTµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÈçͼËùʾ£¬ÓÉ|PF1|+|PF2|=|QF1|=R=2$\sqrt{2}$£¾|F1F2|=2£¬¿ÉµÃ¶¯µãPµÄ¹ì¼£ÎªÍÖÔ²£¬Éè±ê×¼·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬a=$\sqrt{2}$£¬c=1£¬b2=a2-c2£®¼´¿ÉµÃ³ö£®
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®ÓÉ$\overrightarrow{OM}+2\overrightarrow{ON}=2\overrightarrow{O{F_1}}$£¬¿ÉµÃx1+2x2=-2£¬y1+2y2=0£®°Ñx1=-2-2x2£¬y1=-2y2£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{£¨2+2{x}_{2}£©^{2}}{2}+4{y}_{2}^{2}$=1£¬ÓÖ$\frac{{x}_{2}^{2}}{2}+{y}_{2}^{2}=1$£¬
ÁªÁ¢½âµÃ¼´¿ÉµÃ³ö£®
£¨3£©¼ÙÉèÔÚyÖáÉÏ´æÔÚ¶¨µãT£¨0£¬t£©£¬Ê¹ÒÔABΪֱ¾¶µÄÔ²ºã¹ýÕâ¸öµã£®ÉèÖ±ÏßABµÄ·½³ÌΪy=kx-$\frac{1}{3}$£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ¸ùÓëϵÊýµÄ¹ØÏµ£¬´úÈëÉÏʽ$\overrightarrow{TA}•\overrightarrow{TB}$=0£¬½â³ö¼´¿É£®

½â´ð ½â£º£¨1£©ÈçͼËùʾ£¬¡ß|PF1|+|PF2|=|QF1|=R=2$\sqrt{2}$£¾|F1F2|=2£¬
¡à¶¯µãPµÄ¹ì¼£ÎªÍÖÔ²£¬Éè±ê×¼·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬a=$\sqrt{2}$£¬c=1£¬b2=1£®
¡à·½³ÌCΪ$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£®¡ß$\overrightarrow{OM}+2\overrightarrow{ON}=2\overrightarrow{O{F_1}}$£¬
¡àx1+2x2=-2£¬y1+2y2=0£®
¡àx1=-2-2x2£¬y1=-2y2£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{£¨2+2{x}_{2}£©^{2}}{2}+4{y}_{2}^{2}$=1£¬ÓÖ$\frac{{x}_{2}^{2}}{2}+{y}_{2}^{2}=1$£¬
ÁªÁ¢½âµÃ$\left\{\begin{array}{l}{{x}_{2}=-\frac{5}{4}}\\{{y}_{2}=-\frac{\sqrt{14}}{8}}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{{x}_{1}=\frac{1}{2}}\\{{y}_{1}=\frac{\sqrt{14}}{4}}\end{array}\right.$£®
¡àkMN=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{3\sqrt{14}}{14}$£®
£¨3£©¼ÙÉèÔÚyÖáÉÏ´æÔÚ¶¨µãT£¨0£¬t£©£¬Ê¹ÒÔABΪֱ¾¶µÄÔ²ºã¹ýÕâ¸öµã£®ÉèÖ±ÏßABµÄ·½³ÌΪy=kx-$\frac{1}{3}$£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
Ôò$\overrightarrow{TA}•\overrightarrow{TB}$=£¨x1£¬y1-t£©•£¨x2£¬y2-t£©=x1x2+£¨y1-t£©£¨y2-t£©=x1x2+$£¨k{x}_{1}-\frac{1}{3}£©£¨k{x}_{2}-\frac{1}{3}£©$-t$[k£¨{x}_{1}+{x}_{2}£©-\frac{2}{3}]$+t2=£¨1+k2£©x1x2$-£¨\frac{1}{3}k+tk£©$£¨x1+x2£©+$\frac{1}{9}$+$\frac{2}{3}t$+t2=0£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx-\frac{1}{3}}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬»¯Îª£¨1+2k2£©x2-$\frac{4}{3}kx$-$\frac{16}{9}$=0£¬¡÷£¾0ºã³ÉÁ¢£®
¡àx1+x2=$\frac{4k}{3£¨1+2{k}^{2}£©}$£¬x1x2=-$\frac{16}{9£¨1+2{k}^{2}£©}$£®
´úÈëÉÏʽ¿ÉµÃ£º-$\frac{16£¨1+{k}^{2}£©}{9£¨1+2{k}^{2}£©}$-$£¨\frac{1}{3}k+kt£©¡Á\frac{4k}{3£¨1+2{k}^{2}£©}$+$\frac{1}{9}$+$\frac{2}{3}t$+t2=0£¬»¯Îª£¨18t2-18£©k2+£¨9t2+6t-15£©=0£¬
¡à$\left\{\begin{array}{l}{18{t}^{2}-18=0}\\{9{t}^{2}+6t-15=0}\end{array}\right.$£¬½âµÃt=1£®Âú×ã¡÷£¾0£®
¡àÔÚyÖáÉÏ´æÔÚ¶¨µãT£¨0£¬1£©£¬Ê¹ÒÔABΪֱ¾¶µÄÔ²ºã¹ýÕâ¸öµãT£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¶¨Òå¼°Æä±ê×¼·½³Ì¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Ô²µÄÐÔÖÊ¡¢ÏòÁ¿×ø±êÔËË㣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ò»ÃûÉä»÷Ô˶¯Ô±¶Ô°ÐÉä»÷£¬Ö±µ½µÚÒ»´ÎÃüÖÐΪֹ£¬Èôÿ´ÎÃüÖеĸÅÂÊÊÇ0.6£¬ÇÒ¸÷´ÎÉä»÷½á¹û»¥²»Ó°Ï죬ÏÖÔÚÓÐ4¿Å×Óµ¯£¬ÔòÃüÖкóÊ£Óà×Óµ¯ÊýXµÄ¾ùֵΪ£¨¡¡¡¡£©
A£®2.44B£®3.376C£®2.376D£®2.4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª|$\overrightarrow{a}$|=|2$\overrightarrow{b}$|=1£¬$\overrightarrow{a}$•$\overrightarrow{b}$=1£¬ÔòÏòÁ¿$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$µÄ·½ÏòÉϵÄͶӰΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁÐÃüÌâÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô|$\overrightarrow{a}$|=0£¬Ôò$\overrightarrow{a}$=0B£®Èô|$\overrightarrow{a}$|=|$\overrightarrow{b}$|£¬Ôò$\overrightarrow{a}$=$\overrightarrow{b}$»ò$\overrightarrow{a}$=-$\overrightarrow{b}$
C£®Èô$\overrightarrow{a}$Óë$\overrightarrow{b}$ÊÇÆ½ÐÐÏòÁ¿£¬Ôò|$\overrightarrow{a}$|=|$\overrightarrow{b}$|D£®Èô$\overrightarrow{a}$=$\overrightarrow{0}$£¬Ôò-$\overrightarrow{a}$=$\overrightarrow{0}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚ¡÷ABCÖУ¬ÄڽǡÏA¡¢¡ÏB¡¢¡ÏCµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬Èô$\overrightarrow{m}$=£¨b£¬$\sqrt{3}$cosB£©£¬$\overrightarrow{n}$=£¨sinA£¬-a£©£¬ÇÒ$\overrightarrow{m}$¡Í$\overrightarrow{n}$£®
£¨1£©Çó¡ÏBµÄ´óС£»
£¨2£©Èôb=3£¬sinC=2sinA£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÇúÏßC£º$\left\{\begin{array}{l}{x=2cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±Ïßl£º$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨¢ñ£©Ð´³öÇúÏßCµÄ¼«×ø±ê·½³ÌºÍÖ±ÏßlÔÚyÖáÉϵĽؾࣻ
£¨¢ò£©¹ýÇúÏßCÉÏÈÎÒ»µãP×÷Óël¼Ð½ÇΪ30¡ãµÄÖ±Ïߣ¬½»lÓÚµãA£¬Çó|PA|µÄ×î´óÖµÓë×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªÔ²O£ºx2+y2=1Ϊ¡÷ABCµÄÍâ½ÓÔ²£¬ÇÒtanA=2£¬Èô$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$£¬Ôòx+yµÄ×î´óֵΪ$\frac{5-\sqrt{5}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª¹ØÓÚx²»µÈʽ|2x-a|-|2x+2a-3|£¼x2-8x+13Óн⣬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª¼¯ºÏA={x|x2=2}£¬B={1£¬$\sqrt{2}$£¬2}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{2}B£®{$\sqrt{2}$}C£®{-$\sqrt{2}$£¬1£¬$\sqrt{2}$£¬2}D£®{1£¬$\sqrt{2}$£¬2}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸