精英家教网 > 高中数学 > 题目详情
4.已知圆O:x2+y2=1为△ABC的外接圆,且tanA=2,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x+y的最大值为$\frac{5-\sqrt{5}}{4}$.

分析 延长AO交BC于D,设$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,(m>0,n>0),由平面向量基本定理和向量共线定理可得$\frac{m}{x}$=$\frac{n}{y}$=$\frac{|AD|}{|AO|}$,由B,C,D三点共线,可得$\frac{|AD|}{|AO|}$x+$\frac{|AD|}{|AO|}$y=1,进而得到x+y=$\frac{1}{1+\frac{|OD|}{|AO|}}$,求出|OD|的最小值,可过O作OM⊥BC,求得|OM|即可得到所求最大值.

解答 解:延长AO交BC于D,设$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,(m>0,n>0),
又$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,易得$\frac{m}{x}$=$\frac{n}{y}$=$\frac{|AD|}{|AO|}$,
即有m=$\frac{|AD|}{|AO|}$x,n=$\frac{|AD|}{|AO|}$y,
则$\overrightarrow{AD}$=$\frac{|AD|}{|AO|}$x$\overrightarrow{AB}$+$\frac{|AD|}{|AO|}$y$\overrightarrow{AC}$,
由B,C,D三点共线,可得$\frac{|AD|}{|AO|}$x+$\frac{|AD|}{|AO|}$y=1,
即有x+y=$\frac{|AO|}{|AD|}$=$\frac{|AO|}{|AO|+|OD|}$=$\frac{1}{1+\frac{|OD|}{|AO|}}$,
由于|AO|=1,只需|OD|最小,
过O作OM⊥BC,垂足为M,则OD≥OM,
即有∠BOM=∠BAC,
由tan∠BAC=2,可得cos∠BAC=$\frac{\sqrt{5}}{5}$,
即有cos∠BAC=$\frac{|OM|}{|OB|}$=$\frac{\sqrt{5}}{5}$,则|OM|=$\frac{\sqrt{5}}{5}$.
则x+y≤$\frac{1}{1+\frac{\sqrt{5}}{5}}$=$\frac{5-\sqrt{5}}{4}$.
即有x+y的最大值为$\frac{5-\sqrt{5}}{4}$.
故答案为:$\frac{5-\sqrt{5}}{4}$.

点评 本题考查平面向量的基本定理的运用,主要考查向量共线定理的运用和同角的基本关系式的运用,考查运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设f(x)是定义在R上的恒不为零的函数,对?x,y∈R,都有f(x)•f(y)=f(x+y),若数列{an}满足a1=$\frac{1}{3},{a_n}=f(n),n∈{N^*}$,且其前n项和Sn对任意的正整数n都有Sn≤M成立,则M的最小值是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{1}{2}$,动点C满足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,给出以下命题:
①若x+y=1,则点C的轨迹是直线;
②若|x|+|y|=1,则点C的轨迹是矩形;
③若xy=1,则点C的轨迹是抛物线;
④若$\frac{x}{y}$=1,则点C的轨迹是直线;
⑤若x2+y2+xy=1,则点C的轨迹是圆.
以上命题正确的是①②⑤(写出你认为正确的所有命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆F1:(x+1)2+y2=8,点F2(1,0),点Q在圆F1上运动,QF2的垂直平分线交QF1于点P.
(1)求动点P的轨迹的方程C;
(2)设M,N分别是曲线C上的两个不同点,且点M在第一象限,点N在第三象限,若$\overrightarrow{OM}+2\overrightarrow{ON}=2\overrightarrow{O{F_1}}$,O为坐标原点,求直线MN的斜率;
(3)过点$S({0,-\frac{1}{3}})$的动直线l交曲线C于A,B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x∈[0,1]}\\{(x-2)^{2},x∈(1,+∞)}\end{array}\right.$,若f(x)在区间[-a,a]上单调递增,则a的取值范围为(  )
A.(-∞,1]B.[1,+∞)C.(0,1]D.(-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知在△ABC中,三个内角∠A、∠B、∠C所对的边为a、b、c,且a=5,b=8,∠C=60°,求$\overrightarrow{BC}$•$\overrightarrow{CA}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知复数z1,z2满足|z1|≤1,-1≤Rez2≤1,-1≤Imz2≤1,若z=z1+z2,则z在复平面上对应的点组成的图形的面积为12+π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$,离心率$e=\frac{{2\sqrt{2}}}{3}$,且过点$(2\sqrt{2},\frac{1}{3})$,
(1)求椭圆方程;
(2)Rt△ABC以A(0,b)为直角顶点,边AB,BC与椭圆交于B,C两点,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某小区有排成一排的7个车位,求满足下列条件的停车方法数:
(1)现有3辆不同的车需要停放,要求3辆车连在一起;
(2)现有3辆不同的车需要停放,要求3辆车彼此不相邻;
(3)现有4辆不同的车需要停放,要求剩余的3个车位连在一起;
(4)现有4辆不同的车需要停放,要求剩余的3个车位彼此不相邻.

查看答案和解析>>

同步练习册答案