精英家教网 > 高中数学 > 题目详情
已知M(-3,0)﹑N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m-1,m0).
(1)求P点的轨迹方程并讨论轨迹是什么曲线?
(2)若, P点的轨迹为曲线C,过点Q(2,0)斜率为的直线与曲线C交于不同的两点A﹑B,AB中点为R,直线OR(O为坐标原点)的斜率为,求证为定值;
(3)在(2)的条件下,设,且,求在y轴上的截距的变化范围.

(1)略
(2)


(2)时,曲线C方程为,设的方程为:
与曲线C方程联立得:
,则①,②,
可得
(3)由代入①②得:
③,④,
③式平方除以④式得:
上单调递增,
在y轴上的截距为b,=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线轴上方的交点为,延长交抛物线于点是抛物线上一动点,且M之间运动.
(1)当时,求椭圆的方程;
(2)当的边长恰好是三个连续的自然数时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题满分12分)
在直角坐标平面内,已知点,动点满足 .
(1)求动点的轨迹的方程;
(2)过点作直线与轨迹交于两点,线段的中点为,轨迹的右端点为点N,求直线MN的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线L过点且与双曲线有且仅有一个公共点,则这样的直
线有(   )
A.1 条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
在直角坐标系中,点P到两的距离之和等于6,设点P的轨迹为曲线,直线与曲线交于AB两点.
(Ⅰ)求曲线的方程;
(Ⅱ)若以线段AB为直径的圆过坐标原点,求的值;
(Ⅲ)当实数取何值时,的面积最大,并求出面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点C到定点的距离比到直线的距离少1,
(1)求动点的轨迹的方程;
(2)设A、B是轨迹上异于原点的两个不同点,直线的倾斜角分别为
变化且时,证明直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆与直线交于AB两点,过原点与线段AB中点的直线的斜率为的值为_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
18.(本小题满分14分) A、B是单位圆O上的动点,且A、B分别在第一、二象限,C是圆O与轴正半轴的交点, 为等腰直角三角形。记 (1)若A点的坐标为,求 的值    (2)求的取值范围。
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

短轴长为,离心率的椭圆两焦点为F1,F2,过F1作直线交椭圆于A、B两点,则△ABF2的周长为                         

查看答案和解析>>

同步练习册答案