精英家教网 > 高中数学 > 题目详情
3.已知全集U={x|x>0},A={x|x≥3},则∁A=∁A={x|0<x<3}.

分析 利用补集的性质求解.

解答 解:全集U={x|x>0},A={x|x≥3},则∁A={x|0<x<3},
故答案为:{x|0<x<3}.

点评 本题考查补集的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足an+2+an=an+1,且a1=2,a2=3,则a2017=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=lnx-x的单调递增区间为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设AB=ykm,并在公路北侧建造边长为xkm的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且∠ABC=60°..
(1)求y关于x的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:x取何值时,该公司建设中转站围墙和两条道路总造价M最低.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an}的前n项和为Sn,且S2=4,S4=16,数列{bn}满足bn=an+an+1,则数列{bn}的前9和T9为(  )
A.20B.80C.166D.180

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-x,则不等式f(x)>x的解集用区间表示为(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正项数列{an}满足a1=1,(n+1)a2n+1+an+1an-na${{\;}_{n}}^{2}$=0,数列{bn}的前n项和为Sn且Sn=1-bn
(1)求{an}和{bn}的通项;
(2)令cn=$\frac{{b}_{n}}{{a}_{n}}$,
①求{cn}的前n项和Tn
②是否存在正整数m满足m>3,c2,c3,cm成等差数列?若存在,请求出m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设Sn是公差不为0的等差数列{an}的前n项和,若a1,a2,a4成等比数列,则$\frac{S_4}{S_2}$的值为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}的各项均为正数,且满足a1=1,$\frac{1}{{a}_{n}^{2}}$-$\frac{1}{{a}_{n-1}^{2}}$=1(n≥2,n∈N*),则a1024=(  )
A.$\frac{\sqrt{2}}{16}$B.$\frac{1}{16}$C.$\frac{\sqrt{2}}{32}$D.$\frac{1}{32}$

查看答案和解析>>

同步练习册答案