精英家教网 > 高中数学 > 题目详情
某种报纸,进货商当天以每份进价1元从报社购进,以每份售价2元售出.若当天卖不完,剩余报纸报社以每份0.5元的价格回收.根据市场统计,得到这个季节的日销售量X(单位:份)的频率分布直方图(如图所示),将频率视为概率.
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)若进货量为n(单位:份),当n≥X时,求利润Y的表达式;
(Ⅲ)若当天进货量n=400,求利润Y的分布列和数学期望E(Y)(统计方法中,同一组数据常用该组区间的中点值作为代表).
考点:离散型随机变量的期望与方差,频率分布直方图
专题:概率与统计
分析:(Ⅰ)由已知得100a+0.002×100+0.003×100+0.0035×100=1,由此能求出a.
(Ⅱ)由n≥X,得Y=(2-1)X-(n-X)0.5,由此能求出利润Y的表达式.
(Ⅲ)若当天进货量n=400,依题意销售量X可能值为200,300,400,对应的Y分别为:100,250,400.由此能求出利润Y的分布列和数学期望E(Y).
解答: 解:(Ⅰ)由图可得:
100a+0.002×100+0.003×100+0.0035×100=1,
解得 a=0.0015…(2分)
(Ⅱ)∵n≥X,
∴Y=(2-1)X-(n-X)0.5
=1.5X-0.5n…(7分)
(Ⅲ)若当天进货量n=400,
依题意销售量X可能值为200,300,400,
对应的Y分别为:100,250,400.
利润Y的分布列为:
Y100250400
P0.200.350.45
所以,E(Y)=0.20×100+250×0.35+0.45×400=287.5(元)…(12分)
点评:本题考查概率分布直方图的应用,考查函数表达式的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三棱锥P-ABC中,PA⊥面ABC,∠ABC=90°,且PA=AB=BC=1,若空间中存在一个点到P、A、B、C四个点的距离相等,则这个距离是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
不共线,
a
=
e1
+
e2
b
=3
e1
-3
e2
a
b
是否共线?

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:cos10°cos(-20°)+sin20°sin170°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+x)-
ax
x+1
(a>0).(注:[ln(1+x)]′=
1
1+x

(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范围;
(3)证明:(
2014
2015
2015
1
e

查看答案和解析>>

科目:高中数学 来源: 题型:

某省级示范高中2015年有向甲、乙、丙三所大学推荐保送生的名额,根据这三所大学保送生推荐的条件,该校共有四名学生符合推荐条件学校按照保送生推选的程序,首先由这四名学生各自自主申请,每位申请人只能申请一所大学的保送名额,已知这四名学生申请其中任一所大学都是等可能的,而且他们在申请时互不影响.
(1)求恰有两位学生都申请甲这所大学的概率;
(2)记这四位学生所申请的大学的个数为ξ,求ξ的分布列和数学期望;
(3)对于(2)中的ξ,设“函数f(x)=3sin
x+ξ
2
π,x∈R是偶函数”为事件D,求事件D发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次无放回的抽奖活动中,已知箱中装有除颜色不同外,形状、大小、质地均相同的2个红球、2个黄球、1个蓝球,且混淆均匀,规定:取出一个红球得3分,取出一个黄球得2分,取出一个蓝球得1分.现从箱中任取2个球.
(1)求取出的球1红1黄的概率;
(2)求得分之和为4分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在定义域内是减函数的为(  )
A、y=-3x2
B、y=-
1
x
C、y=5x
D、y=-4x

查看答案和解析>>

同步练习册答案