精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x+x3+x5,x1,x2,x3∈R,x1+x2<0,x2+x3<0,x3+x1<0,则f(x1)+f(x2)+f(x3)的值(  )
A.一定小于0B.一定大于0C.等于0D.正负都有可能

分析 由f(x)=x+x3+x5,显然在定义域R上为增函数,且f(-x)=-x-x3-x5=-f(x),所以函数是奇函数,利用条件,即可得出结论.

解答 解:由f(x)=x+x3+x5,显然在定义域R上为增函数,且f(-x)=-x-x3-x5=-f(x),所以函数是奇函数.
因为x1+x2<0,所以x1<-x2,所以f(x1)<f(-x2)=-f(x2),所以f(x1)+f(x2)<0,
同理f(x2)+f(x3)<0,f(x1)+f(x3)<0,
所以f(x1)+f(x2)+f(x3)<0.
故选:A.

点评 本题考查函数的奇偶性及单调性等知识.考查学生的计算能力,确定函数的奇偶性及单调性是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)=2ln{x^2}-\frac{1}{2}m{x^2}-nx$.
(I)若m=-1,n=3,求函数y=f(x)的单调区间;
(Ⅱ)若x=2是f(x)的极大值点,求出m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,试讨论y=f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知i是虚数单位,若复数(1+ai)(2-i)是纯虚数(a∈R),则复数a+i的共轭复数为-2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若数列{an}中,a1=a2=1,an+2-an+1+an=0,则a2016=(  )
A.-1B.0C.1D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+(2a-2)x,x≤0}\\{{x}^{3}-(3a+3){x}^{2}+ax,x>0}\end{array}\right.$,若曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3,其中x1,x2,x3互不相等)处的切线互相平行,则a的取值范围是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C的对边分别为a,b,c,角B为锐角,且2sinAsinC=sin2B,则$\frac{a+c}{b}$的取值范围为(  )
A.$({1,\sqrt{3}})$B.$({\sqrt{2},\sqrt{3}})$C.$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$D.$({\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=1+2sin(2x-$\frac{π}{3}$).
(1)用五点法作图作出f(x)在x∈[0,$\frac{π}{2}$]的图象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设△ABC是边长为1的正三角形,点P1,P2,P3四等分线段BC(如图所示).
(1)求$\overrightarrow{AB}$•$\overrightarrow{A{P_1}}$+$\overrightarrow{A{P_1}}$•$\overrightarrow{A{P_2}}$的值;
(2)Q为线段AP1上一点,若$\overrightarrow{AQ}$=m$\overrightarrow{AB}$+$\frac{1}{12}$$\overrightarrow{AC}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a为非零常数,已知(x+$\frac{2}{x}$)(1-ax)4的展开式中各项系数和为3,展开式中x2项的系数是-72.

查看答案和解析>>

同步练习册答案