精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+(2a-2)x,x≤0}\\{{x}^{3}-(3a+3){x}^{2}+ax,x>0}\end{array}\right.$,若曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3,其中x1,x2,x3互不相等)处的切线互相平行,则a的取值范围是(-1,2).

分析 对函数f(x)分段研究,求出各段的导数,判断出在x≤0时切线的斜率范围,由此得到在x>0时,斜率的取值范围,由此得到a的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+(2a-2)x,x≤0}\\{{x}^{3}-(3a+3){x}^{2}+ax,x>0}\end{array}\right.$,
∴f′(x)=$\left\{\begin{array}{l}{-2x+2a-2,x≤0}\\{3{x}^{2}-6(a+1)x+a,x>0}\end{array}\right.$,
∵曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3,其中x1,x2,x3互不相等)处的切线互相平行,
即y=f′(x)在点Pi(xi,f(xi))处的值相等.
∵当x≤0时,f′(x)=-2x+2a-2≥2a-2,
∴当x>0时,f′(x)必须满足,
$\left\{\begin{array}{l}{a>2a-2}\\{a+1>0}\end{array}\right.$,
∴-1<a<2,
故答案为(-1,2)

点评 本题主要考查导数的几何意义,解题中运用转化化归的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设二次函数f(x)=ax2+2bx+c(c>b>a),其图象过点(1,0),且与直线y=-a有交点.
(1)求证:$0≤\frac{b}{a}<1$;
(2)若直线y=-a与函数y=|f(x)|的图象从左到右依次交于A,B,C,D四点,若线段AB,BC,CD能构成钝角三角形,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2-ax-4,(a∈R).
(Ⅰ)若f(x)在[0,2]上单调,求a的范围;
(Ⅱ)若f(x)在区间[a,a+1]上的最小值为-8,求a的值.
(Ⅲ)若对任意的a∈R,总存在x0∈[1,2],使得|f(x0)|≥m成立,求m的取值范围.
(Ⅳ)若函数g(x)=x2-|f(x)|在区间(-∞,-2)和(2,+∞)上均单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=sin2x+$\sqrt{3}$sinxcosx+$\frac{1}{2}$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c且函数f(x)在x=A时取得最大值a,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}中,a1=2,且an=$\frac{{2{a_{n-1}}}}{{2+{a_{n-1}}}}$(n≥2).
(1)求证:$\{\frac{1}{a_n}\}$为等差数列,并求an
(2)令bn=a2n-1•a2n+1,求数列{bn}的前n项的和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x+x3+x5,x1,x2,x3∈R,x1+x2<0,x2+x3<0,x3+x1<0,则f(x1)+f(x2)+f(x3)的值(  )
A.一定小于0B.一定大于0C.等于0D.正负都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设i为虚数单位,复数z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)为纯虚数,则a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=(sin15°,cos15°)、$\overrightarrow{b}$=(cos15°,sin15°),则向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边为a,b,c.已知2acosB=$\sqrt{3}$(bcosC+ccosB).
(Ⅰ)求B的值;
(Ⅱ)若c=$\sqrt{3}$b,△ABC的面积为2$\sqrt{3}$,求a,b的值.

查看答案和解析>>

同步练习册答案