精英家教网 > 高中数学 > 题目详情
若cos(x+
π
4
)=
3
5
且0<x<π,求
sin2x+2sin2x
1+tanx
的值.
考点:两角和与差的余弦函数,同角三角函数基本关系的运用
专题:三角函数的求值
分析:由题意可得sinx和cosx的方程组,解之可得sinx和cosx,代入要求的式子化简即可.
解答: 解:∵cos(x+
π
4
)=
3
5

2
2
cosx-
2
2
sinx=
3
5

平方可得
1
2
(1-2sinxcosx)=
9
25

变形可得2sinxcosx=
7
25
,①
又知sinx+cosx>0
∴sinx+cosx=
(sinx+cosx)2
=
1+2sinxcosx
=
4
2
5
  ②
联立①②可解得
sinx=
2
10
cosx=
7
2
10
,∴tanx=
1
7

sin2x+2sin2x
1+tanx
=
7
25
+2×
2
100
1+
1
7
=
7
25
点评:本题考查三角函数式的化简,涉及二倍角公式和同角三角函数的基本关系,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(实验班做)某市规定中学生百米成绩达标标准为不超过16秒.现从该市中学生中按照男、女生比例随机抽取了50人,其中有30人达标.将此样本的频率估计为总体的概率.
(1)随机调查45名学生,设ξ为达标人数,求ξ的数学期望与方差.
(2)如果男、女生采用相同的达标标准,男、女生达标情况如下表:
总计
达标a=24 b=
 
 
不达标c=
 
d=12
 
总计
 
 
n=50
根据表中所给的数据,完成2×2列联表(注:请将答案填到答题卡上),并判断在犯错误的概率不超过0.01的前提下能否认为“体育达标与性别有关”?若有,你能否给出一个更合理的达标方案?
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.0250.010.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定义域;    
(2)判断f(x)的奇偶性并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2-(k2+4)x-2k2-12,当抛物线与x轴的两交点间的距离最小时,求出此时k的值并求出最小的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2
(1)若
a
b
,求
a
b
的值;
(2)若
a
b
不共线,且对?t∈R,|t
a
+
b
|≥|
a
-
b
|恒成立,求
a
b
的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(1)0.25×(
1
2
-4-4÷(
5
-1)0-(
1
16
 -
1
2

(2)lg25+lg2•lg50+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x2-2x-3=0},B={x|ax-2=0}满足A∩B=B,求实数a组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=lnx-ax,g(x)=
1
3
x3+x+1.
(1)若曲线y=g(x)的切线l过点A(0,
1
3
),求切线l的方程;
(2)讨论函数h(x)=2f(x)+g(x)-
1
3
x3的单调性;
(3)若x1,x2是函数f(x)的两个相异零点,求证:g(x1x2)>g(e2).(e为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ是第二象限角,且sinθ=
4
5
,则tan(θ-
π
4
)的值为
 

查看答案和解析>>

同步练习册答案