精英家教网 > 高中数学 > 题目详情
2.已知f(x)=log(1-2cosx)(2sinx+1)的定义域为{x|2kπ+$\frac{π}{3}$<x<$\frac{7}{6}$π+2kπ,且x≠$\frac{π}{2}+2kπ$,k∈Z}.

分析 由对数式的真数大于零,底数大于零且不等于1联立不等式组求得答案.

解答 解:要使原函数有意义,则$\left\{\begin{array}{l}{2sinx+1>0}\\{1-2cosx>0}\\{1-2cosx≠1}\end{array}\right.$,
由2sinx+1>0,得$-\frac{π}{6}+2kπ<x<\frac{7π}{6}+2kπ,k∈Z$;
由1-2cosx>0,得$\frac{π}{3}+2kπ<x<\frac{5π}{3}+2kπ,k∈Z$;
由1-2cosx≠1,得x$≠\frac{π}{2}+kπ,k∈Z$.
取交集得:{x|2kπ+$\frac{π}{3}$<x<$\frac{7}{6}$π+2kπ,且x≠$\frac{π}{2}+2kπ$,k∈Z}.
故答案为:{x|2kπ+$\frac{π}{3}$<x<$\frac{7}{6}$π+2kπ,且x≠$\frac{π}{2}+2kπ$,k∈Z}.

点评 本题考查函数的定义域及其求法,考查了三角不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.以下哪个区间是函数f(x)=sin(2x-$\frac{π}{4}$)的单调递增区间(  )
A.[-$\frac{3π}{8}$,$\frac{π}{8}$]B.[-$\frac{π}{8}$,$\frac{3π}{8}$]C.[$\frac{π}{8}$,$\frac{5π}{8}$]D.[$\frac{3π}{8}$,$\frac{7π}{8}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列各值中,比tan$\frac{π}{5}$大的是(  )
A.tan(-$\frac{π}{7}$)B.tan$\frac{9π}{8}$C.tan35°D.tan(-142°)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a=2${\;}^{-\frac{1}{2}}$,b=log${\;}_{\frac{1}{3}}$2,c=log${\;}_{\frac{1}{2}}$$\frac{1}{5}$,则a、b、c的大小关系是b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若数列{an}的公差为2,则数列{3an-2}的公差为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果函数f(x)=-ax的图象过点$({3,-\frac{1}{8}})$,那么a的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=x+$\frac{1}{x}$在(0,1]上是减函数,在[1,+∞)上是增函数,函数y=x+$\frac{2}{x}$在$(0,\sqrt{2}]$上是减函数,在$[\sqrt{2},+∞)$上是增函数,函数y=x+$\frac{3}{x}$在$(0,\sqrt{3}]$上是减函数,在$[\sqrt{3},+∞)$上是增函数,
…利用上述所提供的信息解决下列问题:若函数y=x+$\frac{3^m}{x}$(x>0)的值域是[6,+∞),则实数m的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有机智的同学发现“任何三次函数都有‘拐点’;任何三次函数都有对称中心,且‘拐点’就是对称中心”.请你将这一机智的发现作为条件,求:
(1)函数f(x)=x3-3x2+3x+1的图象对称中心为(1,2);
(2)若函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{2}{2x-1}$,则g($\frac{1}{2016}$)+g($\frac{2}{2016}$)+…+g($\frac{2015}{2016}$)=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2x-x$\sqrt{4-{x}^{2}}$的最大值为(  )
A.4B.3$\sqrt{2}$C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

同步练习册答案