精英家教网 > 高中数学 > 题目详情
2.若Cn3=Cn5,则n=8.

分析 利用组合数的性质即可得出.

解答 解:∵Cn3=Cn5
∴n=3+5=8.
故答案为:8.

点评 本题考查了组合数的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知圆O的圆心为(2,-1),且圆与直线3x+4y-7=0相切.求:
(1)求圆O的标准方程;
(2)圆心O关于直线2x-y+1=0的对称点O′为圆心,半径不变的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.把椭圆的普通方程9x2+4y2=36化为参数方程是(  )
A.$\left\{\begin{array}{l}x=3cosθ\\ y=2sinθ\end{array}\right.(θ为参数)$B.$\left\{\begin{array}{l}x=2cosθ\\ y=3sinθ\end{array}\right.(θ为参数)$
C.$\left\{\begin{array}{l}x=9cosθ\\ y=4sinθ\end{array}\right.(θ为参数)$D.$\left\{\begin{array}{l}x=4cosθ\\ y=9sinθ\end{array}\right.(θ为参数)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.复数$\frac{(1-i)^{2}}{i}$的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式$\frac{x-1}{{{x^2}-x-6}}$≥0的解集为(  )
A.(-∞,-2)∪(3,+∞)B.(-∞,-2)∪[1,3)C.(-2,1]∪(3,+∞)D.(-2,1)∪[1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用反证法证明2,3,$\sqrt{5}$不可能是一个等差数列中的三项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)的图象如图所示,f'(x)是f(x)的导函数,将下列三个数值f(2)-f(1),f'(1),f'(2)由小到大排列顺序为f′(2)<f(2)-f(1)<f′(1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.化简$\frac{cos(2π+α)tan(π+α)}{{cos(\frac{π}{2}-α)}}$的结果为 (  )
A.1B.-1C.tanαD.-tanα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)在R上存在导函数f′(x),对于任意的实数x,都有f(x)=4x2-f(-x),当x∈(-∞,0)时,f′(x)+$\frac{1}{2}$<4x,若f(m+1)≤f(-m)+4m+2,则实数m的取值范围是(  )
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

同步练习册答案