精英家教网 > 高中数学 > 题目详情
16.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为137.

分析 利用百分比,可得该校女教师的人数.

解答 解:初中部女教师的人数为110×70%=77;高中部女教师的人数为150×40%=60,
∴该校女教师的人数为77+60=137,
故答案为137.

点评 本题考查该校女教师的人数,考查收集数据的方法,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知数列满足:${a_1}=1,\frac{1}{{{a_{n+1}}}}=\frac{2}{a_n}+1,({n∈{N^*}})$,若${b_{n+1}}=({n-λ})({\frac{1}{a_n}+1})$,b1=-λ,且数列{bn}是单调递增数列,则实数λ的取值范围为λ<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知甲、乙两煤矿每年的产量分别为200万吨和260万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站毎年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/t和1.5元/t,乙煤矿运往东车站和西车站的运费价格分别为0.8元/t和1.6元/t.煤矿应怎样编制调运方案,能使总运费最少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设i是虚数单位,则复数z=$\frac{1-3{i}^{3}}{1-2i}$的共轭复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)从0,1,2,3,4,5这六个数字任取3个,问能组成多少个没有重复数字的三位数?
(2)若(x6+3)(x2+$\frac{a}{x}$)5的展开式中含x10项的系数为43,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{{x}^{2}-2x+a+1,x>0}\end{array}\right.$,若函数g(x)=f(x)-ax-1有4个零点,则实数a的取值范围为(  )
A.(0,1)B.(0,2)C.(-1,2)D.(1+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cosωx•sin(ωx-$\frac{π}{3}$)+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{4}$(ω>0,x∈R),且函数y=f(x)图象的一个对称中心到它对称轴的最近距离为$\frac{π}{4}$.
(1)求ω的值及f(x)的对称轴方程;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=0,sinB=$\frac{4}{5}$,a=$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.等差数列{an}的前n项和为Sn,已知a2=7,a3为整数,且Sn的最大值为S5
(1)求{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x1,x2,…,x10为1,2,…,10的一个排列,则满足对任意正整数m,n,且1≤m<n≤10,都有xm+m≤xn+n成立的不同排列的个数为(  )
A.512B.256C.255D.64

查看答案和解析>>

同步练习册答案