精英家教网 > 高中数学 > 题目详情
(12分)如图,在直三棱柱中,,点的中点.
求证:(1);(2)平面.
证明:(1)在直三棱柱中,平面
所以,

所以,平面
所以,.

(2)设的交点为,连结
为平行四边形,所以中点,又的中点,
所以是三角形的中位线,
又因为平面平面,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,在三棱柱中,侧面,且与底面成角,,则该棱柱体积的 最小值为          . 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图是圆锥为底面中心)的侧面展开图,是其侧面展开图中弧的四等分点,则在圆锥中,下列说法错误的是(  )
A.是直线所成的角;
B.是直线与平面所成的角;
C.是二面角的平面角;
D.平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在如图的长方体中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)当EAB的中点时,求点E到平面ACD1的距离;
(2)AE等于何值时,二面D1-EC-D的大小为.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四棱锥P—ABCD中,底面ABCD为菱形,PD=AD,∠DAB="60°," PD⊥底面ABCD.
(1)求作平面PAD与平面PBC的交线,并加以证明;
(2)求PA与平面PBC所成角的正弦值;
(3)求平面PAD与平面PBC所成锐二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分)如图,在梯形中,,四边形为矩形,平面平面.
(I)求证:平面
(II)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图,四面体ABCD中,O、E分别是BD、BC的中点,
(I)求证:平面BCD;
(II)求点E到平面ACD的距离;
(III)求二面角A—CD—B的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(10分) 如图,已知线段AB、BD在平面内,线段,  
如果,
(1)求C、D两点间的距离.    
(2)求点D到平面ABC的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.如图,由编号,…,,…()的圆柱自下而上组成.其中每一个圆柱的高与其底面圆的直径相等,且对于任意两个相邻圆柱,上面圆柱的高是下面圆柱的高的一半.若编号1的圆柱的高为,则所有圆柱的体积的和为_______________(结果保留).

查看答案和解析>>

同步练习册答案