分析 (Ⅰ)证明:在△ABD中,利用正弦定理得∠ADB=90°,可求得BD=2.
由DB2+SD2=BS2,得SD⊥BD,即可证得BD⊥平面SAD
(Ⅱ) 设S在面ABCD的投影为O,则∠SBO就是直线SB与平面ABCD所成角.
由VB-SAD=VS-ABD,得$\frac{1}{3}×{s}_{△SAD}×DB=\frac{1}{3}×{s}_{ADB}×SO$,解得SO,即可求得sin$∠SBO=\frac{SO}{SB}=\frac{3}{4}$.
解答 (Ⅰ)证明:在△ABD中,$\frac{AB}{sin∠ADB}=\frac{AD}{sin∠DBA}$,把∠DBA=60°,$AD=2\sqrt{3}$,BA=4代入上式,…(2分)
解得sin∠ADB=1,所以∠ADB=90°,即AD⊥BD,可求得BD=2.
在△SBD中,∵$SD=2\sqrt{3}$,BS=4,BD=2,
∴DB2+SD2=BS2,∴SD⊥BD,…(4分)
∵BD?平面SAD,SD∩AD=D,∴BD⊥平面SAD.…(6分)
(Ⅱ)如图设S在面ABCD的投影为O,则∠SBO就是直线SB与平面ABCD所成角.
在△SAD中,∵∠SAD=30°,$AD=SD=2\sqrt{3}$,∴△SAD为等边△,则s△SAD=3$\sqrt{3}$
由(Ⅰ)得s△ADB=2$\sqrt{3}$,
由VB-SAD=VS-ABD,得$\frac{1}{3}×{s}_{△SAD}×DB=\frac{1}{3}×{s}_{ADB}×SO$,解得SO=3
在Rt△SOB中,sin$∠SBO=\frac{SO}{SB}=\frac{3}{4}$.
∴线SB与平面ABCD所成角的正弦值为$\frac{3}{4}$![]()
点评 本题考查了空间线面垂直的判定,等体积法求点面距离,从而求线面角,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -2017 | C. | 2016 | D. | 2017 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $18,\frac{2}{3}$ | B. | $16,\frac{3}{4}$ | C. | $16,\frac{1}{4}$ | D. | $18,\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 非优秀 | 合计 | |
| 甲 | 10 | ||
| 乙 | 30 | ||
| 合计 | 110 |
| P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com