精英家教网 > 高中数学 > 题目详情
20.已知数列{an}是公差为d(d≠0)的等差数列,数列{bn}是公比为q(q∈R,且q≠0,1)的等比数列.若函数f(x)=x2,且a1=f(d-1),a5=f(2d-1),b1=f(q-2),b3=f(q).
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设数列{cn}的前n项和为Sn,对?n∈N+,$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{2{b}_{2}}$+…+$\frac{{c}_{n}}{n{b}_{n}}$=an+1均成立,求Sn

分析 (Ⅰ)运用等差数列和等比数列的通项公式,解方程可得d=2,q=3,进而得到所求通项公式;
(Ⅱ)由条件求得n=1时,c1=3,当n>1时,cn=2n•3n-1,再由数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理,即可得到所求和.

解答 解:(Ⅰ)a1=f(d-1)=(d-1)2,a5=f(2d-1)=(2d-1)2
即有a5-a1=4d=(2d-1)2-(d-1)2=3d2-2d,
解得d=2(0舍去),
可得an=1+2(n-1)=2n-1;
由b1=f(q-2)=(q-2)2,b3=f(q)=q2
即有q2=$\frac{{b}_{3}}{{b}_{1}}$=$\frac{{q}^{2}}{(q-2)^{2}}$,
解得q=3(0和1舍去),
即有bn=3n-1
(Ⅱ)由?n∈N+,$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{2{b}_{2}}$+…+$\frac{{c}_{n}}{n{b}_{n}}$=an+1均成立,
可得n=1时,c1=a2=3,
n>1时,$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{2{b}_{2}}$+…+$\frac{{c}_{n}}{n{b}_{n}}$=an+1
即有$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{2{b}_{2}}$+…+$\frac{{c}_{n-1}}{(n-1){b}_{n-1}}$=an
两式相减可得$\frac{{c}_{n}}{n{b}_{n}}$=2,即有cn=2n•3n-1(n>1),
则前n项和为Sn=3+4•3+6•32+…+2n•3n-1
3Sn=9+4•32+6•33+…+2n•3n
两式相减可得,-2Sn=6+2(32+33+…+3n-1)-2n•3n=6+2•$\frac{9(1-{3}^{n-2})}{1-3}$-2n•3n
化简可得Sn=$\frac{3+(2n-1)•{3}^{n}}{2}$.

点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=cosxsin(x-$\frac{π}{6}$).
(Ⅰ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,若f(A)=$\frac{1}{4}$,a=$\sqrt{3}$,且sinB=2sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知A,B,O三点不共线,若|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$+$\overrightarrow{OB}$|,则向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为(  )
A.锐角B.直角C.钝角D.锐角或钝角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}前n项和Sn,求通项公式{an}.
(1)Sn=2n2+3n;
(2)Sn=3n+5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2$\sqrt{3}$sin(2ωx+φ)(ω>0,φ∈(0,π))的图象中相邻两条对称轴间的距离为$\frac{π}{2}$,且点(-$\frac{π}{4}$,0)是它的一个对称中心.
(1)求f(x)的表达式;
(2)若φ(x)=f(-x),求φ(x)的单调增区间.
(3)若f(ax)(a>0)在(0,$\frac{π}{3}$)上是单调递减函数,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在边长为1的正三角形ABC中,设$\overrightarrow{BC}$=3$\overrightarrow{BD}$,求$\overrightarrow{AD}$•$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果以原点为圆心的圆经过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点.并且被直线x=$\frac{{a}^{2}}{c}$(c为双曲线的半焦距)分为弧长为2:1的两段,则该双曲线离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数)和定点P(4,1),过P的直线与曲线交于A,B,若线段AB上的点Q使得$\frac{PA}{PB}$=$\frac{AQ}{QB}$成立,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)通过计算可得下列等式:
23-13=3×12+3×1+1;
33-23=3×22+3×2+1;
43-33=3×32+3×3+1;

(n+1)3-n3=3×n2+3×n+1;
将以上各等式两边分别相加,得
(n+1)3-13=3(12+22+32+…+n2)+3(1+2+3+…+n)+n,
即:12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1)
类比上述求法,试求出13+23+33+…+n3的值.
(2)用数学归纳法证明第(1)问所得结论.

查看答案和解析>>

同步练习册答案