精英家教网 > 高中数学 > 题目详情
11.将椭圆的标准方程$\frac{x^2}{9}+\frac{y^2}{4}$=1化为参数方程:
(1)设x=3cosφ,φ为参数;
(2)设x=$\frac{3}{2}$t,t为参数.

分析 :(1)设x=3cosφ,φ为参数,则cos2φ+$\frac{{y}^{2}}{4}$=1,取y=2sinφ,可得椭圆的参数方程.
(2)设x=$\frac{3}{2}$t,t为参数.则$\frac{{t}^{2}}{4}+\frac{{y}^{2}}{4}$=1,取y=$\sqrt{4-{t}^{2}}$,可得椭圆的参数方程.

解答 解:(1)设x=3cosφ,φ为参数,则cos2φ+$\frac{{y}^{2}}{4}$=1,取y=2sinφ,
可得椭圆的参数方程:$\left\{\begin{array}{l}{x=3cosφ}\\{y=2sinφ}\end{array}\right.$,φ为参数.
(2)设x=$\frac{3}{2}$t,t为参数.则$\frac{{t}^{2}}{4}+\frac{{y}^{2}}{4}$=1,取y=$\sqrt{4-{t}^{2}}$,
可得椭圆的参数方程为:$\left\{\begin{array}{l}{x=\frac{3}{2}t}\\{y=\sqrt{4-{t}^{2}}}\end{array}\right.$(t为参数).

点评 本题考查了椭圆的参数方程、同角三角函数基本关系式、方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知矩阵A=$[\begin{array}{l}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}]$,则A的逆矩阵是$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$
(1)求C的普通方程和l的倾斜角
(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.执行如图的程序框图,则输出的i=6.([$\frac{S}{3}$]表示不超过$\frac{S}{3}$的最大整数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设P为曲线C1:$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{9}$=1的任意一点,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ-2sinθ)=15,则点P到直线l的距离的最小值$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一工厂生产某种机器零件,零件出厂前要进行质量检测,检测的方法是:先从这批零中任取3件做检测,若这3件都是合格品,则这批零件通过检测;若这3件中恰有2 件是合格品,则再从剩余零件中任取1件做检测,若为合格品则这批零件通过检测;其他情况下,这批零件都不能通过检测,假设这批零件的合格率位80%,即取出的零件是合格品的概率都为$\frac{4}{5}$,且各个零件是否为合格品相互独立.
(1)求这批零件通过检测的概率;
(2)已知每件零件检测费用为50元,抽取的每个零件都要检测,对这批零件做质量检测所需费用记为X(单位:元),求X的分布列级数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,右焦点为F(1,0).
(1)求椭圆E的标准方程;
(2)设点O为坐标原点,过点F作直线l与椭圆E交于M,N两点,若$\overrightarrow{OM}•\overrightarrow{ON}=0$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若角α的终边经过点P(1,-2),则cos2α=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如图所示(x(吨)为该商品进货量,y(天)为销售天数);
x234568911
y12334568
(Ⅰ)根据上表数据在下列网格中绘制散点图;
(Ⅱ)根据上表提供的数据,求出y关于x的线性回归方程 $\widehat{y}$=$\widehat{b}x+\widehat{a}$;
(Ⅲ)根据(Ⅱ)中的计算结果,若该商店准备一次性进货该商品24吨,预测需要销售天数.
参考公式和数据:$\widehat{b}=\frac{{∑}_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{{∑}_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.
$\sum_{i=1}^{8}{x}_{i}=48$,$\sum_{i=1}^{8}{y}_{i}=32$,$\sum_{i=1}^{8}{{x}_{i}}^{2}=356$,$\sum_{i=1}^{8}{x}_{i}{y}_{i}=241$.

查看答案和解析>>

同步练习册答案