精英家教网 > 高中数学 > 题目详情
20.若角α的终边经过点P(1,-2),则cos2α=-$\frac{3}{5}$.

分析 利用任意角的三角函数的定义求得sinα的值,再利用二倍角公式求得cos2α的值.

解答 解:∵角α的终边经过点P(1,-2),
∴x=1,y=-2,r=|OP|=$\sqrt{5}$,
∴sinα=$\frac{y}{r}$=$\frac{-2}{\sqrt{5}}$,
∴cos2α=1-2sin2α=1-2×($\frac{-2}{\sqrt{5}}$)2=-$\frac{3}{5}$.
故答案为:-$\frac{3}{5}$.

点评 本题主要考查任意角的三角函数的定义,二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=excosx-x,求f′(x)=ex(cosx-sinx)-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.将椭圆的标准方程$\frac{x^2}{9}+\frac{y^2}{4}$=1化为参数方程:
(1)设x=3cosφ,φ为参数;
(2)设x=$\frac{3}{2}$t,t为参数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求直线PB与平面ABCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右焦点为F,右顶点为A,一条渐近线方程为y=2$\sqrt{2}$x,且|AF|=2,则该双曲线的实轴长为(  )
A.4B.2$\sqrt{3}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点F(1,0),并且经过点P(1,$\frac{{\sqrt{2}}}{2}$).
(I) 求椭圆E的方程;
(II) 过F作互相垂直的两条直线l1,l2,分别与E交于点A,C与点B,D,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=log2sin($\frac{π}{4}$-$\frac{π}{4}$x)的单调增区间为(  )
A.[3+8k,7+8k)B.(5+8k,7+8k]C.[5+8k,7+8k)D.(3+8k,7+8k]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z=i2017,则复数z=(  )
A.-1B.1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在区间[0,9]上随机地取一个数,若x满足m≤x≤m+7的概率为$\frac{2}{3}$,则m=3或-1.

查看答案和解析>>

同步练习册答案