精英家教网 > 高中数学 > 题目详情
8.若平面α的一个法向量为$\overrightarrow{{u}_{1}}$=(-3,y,2),平面β的一个法向量为$\overrightarrow{{u}_{2}}$=(6,-2,z),且α∥β,则y+z=-3.

分析 利用面面平行的性质可得:$\overrightarrow{{u}_{1}}$∥$\overrightarrow{{u}_{2}}$,再利用向量共线定理即可得出.

解答 解:∵α∥β,
∴$\overrightarrow{{u}_{1}}$∥$\overrightarrow{{u}_{2}}$,
∴存在实数λ使得$\overrightarrow{{u}_{1}}$=λ$\overrightarrow{{u}_{2}}$,
即(-3,y,2)=λ(6,-2,z),
∴$\left\{\begin{array}{l}{-3=6λ}\\{y=-2λ}\\{2=λz}\end{array}\right.$,解得λ=-$\frac{1}{2}$,y=1,z=-4.
∴y+z=-3.
故答案为:-3.

点评 本题考查了面面平行的性质、向量共线定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设fn(x)是等比数列1,x,x2,…,xn的各项和,则fn(2)等于(  )
A.2n-1B.2n+1-1C.2n-2D.2n+1-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知z1=1+ilog2x,z2=$\sqrt{3}$+i,|z1|<|z2|,则实数x的取值范围为(${2}^{-\sqrt{3}}$,${2}^{\sqrt{3}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设sin(x+y)sin(x-y)=m,则cos2x-cos2y的值为-m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集U={1,2,3,4,5},A={1,5},B={2,4},则B∩(∁UA)=(  )
A.{2,3,4}B.{2}C.{2,4}D.{1,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{1,x≥0}\\{{x}^{2}+1,x<0}\end{array}\right.$,则不等式f(1-x2)=f(2x)的解集是{x|0≤x≤1或x=-1-$\sqrt{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设a>0且a≠1,当x为何值时,不等式a${\;}^{2{x}^{2}+1}$>a${\;}^{{x}^{2}+2}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在空间,下列命题中正确的是(  )
A.对边相等的四边形一定是平行四边形
B.四边相等的四边形一定是菱形
C.四边相等的四个角也相等的四边形一定是正方形
D.两条对角线互相平分的四边形是平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足($\overrightarrow{a}$+2$\overrightarrow{b}$)•(5$\overrightarrow{a}$-4$\overrightarrow{b}$)=0,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ为(  )
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案