精英家教网 > 高中数学 > 题目详情
18.设fn(x)是等比数列1,x,x2,…,xn的各项和,则fn(2)等于(  )
A.2n-1B.2n+1-1C.2n-2D.2n+1-2

分析 由已知得∴fn(2)=1+2+22+…+2n,由此利用等比数列性质能求出结果.

解答 解:∵fn(x)是等比数列1,x,x2,…,xn的各项和,
∴fn(2)=1+2+22+…+2n
=$\frac{1-{2}^{n+1}}{1-2}$=2n+1-1.
故选:B.

点评 本题考查等比数列的前n项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知a=log${\;}_{\frac{1}{2}}$5,b=log23,c=1,d=3-0.6,那么(  )
A.a<c<b<dB.a<d<c<bC.a<b<c<dD.a<c<d<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,多面体ABCDEF中,四边形ABCD是矩形,EF∥AD,FA⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于点P
(Ⅰ)证明:PF∥面ECD;
(Ⅱ)证明:AE⊥面ECD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某工厂从1970年的年产值200万元增加到40年后2010年的1000万元,假设每年产值增长率相同,则每年年产值增长率是(x为很小的正数时,ln(1+x)≈x,ln5≈1.61)(  )
A.3%B.4%C.5%D.6%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线C:y2=2px(p>0),过点A(12,0)作直线MN垂直x轴交抛物线于M、N两点,ME⊥ON于E,AE∥OM,O为坐标原点.
(Ⅰ)求p的值;
(Ⅱ)若抛物线C上存在不同的两点G、H关于直线y=x+m对称,求m取值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y2=4x的焦点为F,O为坐标原点,M为抛物线上一点且|MF|=3,则△OMF的面积为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=|log2|x||-($\frac{1}{2}$)x,则下列结论正确的是(  )
A.f(x)有三个零点,且所有零点之积大于-1
B.f(x)有三个零点,且所有零点之积小于-1
C.f(x)有四个零点,且所有零点之积大于1
D.f(x)有四个零点,且所有零点之积小于1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,已AB∥CD,AB=2DC,M为PB的中点.
(1)求证:CM∥平面PAD;
(2)若AD⊥AB,BC⊥PA,平面PAB⊥平面ABCD,求证:PA⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若平面α的一个法向量为$\overrightarrow{{u}_{1}}$=(-3,y,2),平面β的一个法向量为$\overrightarrow{{u}_{2}}$=(6,-2,z),且α∥β,则y+z=-3.

查看答案和解析>>

同步练习册答案