分析 (1)由正弦定理,三角函数恒等变换的应用化简已知可得sinA=4sinAcosC,结合sinA>0,即可得解cosC的值.
(2)由已知利用同角三角函数基本关系式可求sinC的值,利用三角形面积公式可求ab=2,由余弦定理可得a2+b2=4,联立即可解得a,b的值. …(10分)
解答 (本题满分为10分)
解:(1)∵ccosB=(4a-b)cosC,
由正弦定理,得sinCcosB=(4sinA-sinB)cosC…(1分)
化简,得sin(B+C)=4sinAcosC﹒…(3分)
∵A+B+C=π,∴sinA=sin(B+C)﹒
又∵A∈(0,π),
∵sinA>0,
∴$cosC=\frac{1}{4}$. …(5分)
(2)∵C∈(0,π),$cosC=\frac{1}{4}$,
∴$sinC=\sqrt{1-{{cos}^2}C}=\sqrt{1-\frac{1}{16}}=\frac{{\sqrt{15}}}{4}$. …(6分)
∵$S=\frac{1}{2}absinC=\frac{{\sqrt{15}}}{4}$,∴ab=2﹒①
∵$c=\sqrt{3}$,由余弦定理得:3=a2+b2-$\frac{1}{2}$ab,…(8分)
∴a2+b2=4,②
由①②,得a4-4a2+4=0,从而a2=2,可得:$a=±\sqrt{2}$(舍负),
所以,可得:$b=\sqrt{2}$,
∴$a=b=\sqrt{2}$. …(10分)
点评 本题主要考查了正余弦定理,两角和正弦公式及诱导公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | -1 | 0 | 1 | 2 | 3 |
| ex | 0.37 | 1 | 2.72 | 7.39 | 20.09 |
| x+6 | 5 | 6 | 7 | 8 | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com