精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A,B,C的对边分别是a,b,c,已知$\frac{c}{cosC}$=$\frac{4a-b}{cosB}$
(1)求cosC的值;
(2)若c=$\sqrt{3}$,△ABC的面积S=$\frac{\sqrt{15}}{4}$,求a,b的值.

分析 (1)由正弦定理,三角函数恒等变换的应用化简已知可得sinA=4sinAcosC,结合sinA>0,即可得解cosC的值.
(2)由已知利用同角三角函数基本关系式可求sinC的值,利用三角形面积公式可求ab=2,由余弦定理可得a2+b2=4,联立即可解得a,b的值.        …(10分)

解答 (本题满分为10分)
解:(1)∵ccosB=(4a-b)cosC,
由正弦定理,得sinCcosB=(4sinA-sinB)cosC…(1分)
化简,得sin(B+C)=4sinAcosC﹒…(3分)
∵A+B+C=π,∴sinA=sin(B+C)﹒
又∵A∈(0,π),
∵sinA>0,
∴$cosC=\frac{1}{4}$.             …(5分)
(2)∵C∈(0,π),$cosC=\frac{1}{4}$,
∴$sinC=\sqrt{1-{{cos}^2}C}=\sqrt{1-\frac{1}{16}}=\frac{{\sqrt{15}}}{4}$.  …(6分)
∵$S=\frac{1}{2}absinC=\frac{{\sqrt{15}}}{4}$,∴ab=2﹒①
∵$c=\sqrt{3}$,由余弦定理得:3=a2+b2-$\frac{1}{2}$ab,…(8分)
∴a2+b2=4,②
由①②,得a4-4a2+4=0,从而a2=2,可得:$a=±\sqrt{2}$(舍负),
所以,可得:$b=\sqrt{2}$,
∴$a=b=\sqrt{2}$.                                         …(10分)

点评 本题主要考查了正余弦定理,两角和正弦公式及诱导公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在几何体S-ABCD中,AB⊥平面SBC,CD⊥平面SBC,SB⊥SC,AB=SB=SC=2CD=2,G是线段BS的中点.
(1)求GD与平面SCD所成角的正弦值;
(2)求平面SAD与平面SBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$γ:\frac{x^2}{a^2}+{y^2}=1$(常数a>1)的左顶点为R,点A(a,1),B(-a,1),O为坐标原点.(1)设a=2,Q是椭圆γ上任意一点,S(6,0),求$\overrightarrow{QS}•\overrightarrow{QR}$的最小值;
(2)若P是椭圆γ上任意一点,$\overrightarrow{OP}=m\overrightarrow{OA}+n\overrightarrow{OB}$,求m2+n2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.计算$\underset{lim}{△x→0}$$\frac{sin(\frac{π}{6}+△x)-\frac{1}{2}}{△x}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列命题中,正确命题的序号是②③④
①已知cos($\frac{π}{2}$+φ)=-$\frac{{\sqrt{3}}}{2}$,且角φ的终边有一点(2,a),则a=±2$\sqrt{3}$
②函数f(x)的定义域是R,f(-1)=2,对?x∈R,f'(x)>2,则f(x)>2x+4的解集为(-1,+∞);
③根据表格中的数据,可以判定方程ex-x-6=0一个根所在的区间为(2,3);
x-10123
ex0.3712.727.3920.09
x+656789
④已知函数f(x)是定义在R上的偶函数,当x≥0时f(x)=ex-ax,若函数f(x)在R上有且只有4个零点,则a的取值范围是(e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}满足:a1=$\frac{1}{2}$,a1,a2,a3-$\frac{1}{8}$成等差数列,公比q∈(0,1)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知全集U={x|x≤9,x∈N*},两个集合A与B同时满足:A∩B={2,4},A∩(∁UB)={1,3,5}且∁U(A∪B)={7,8}.求集合A、B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某城市准备对公交车票价的提升实施改革,市某报社提前调查了市区公众对公交车票价提升的态度,随机抽查了50 人,将调查情况进行整理后制成统计表:
 年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
 频数 5 10 15 10 5
 赞成人数 9 3
(1)完成被调查者的频率分布直方图;

(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取2 人进行追踪调查,记选取的4 人中不赞成公交车票价提升的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.“已知a,b,c,d是实数,若a>c,b>d,则a+b>c+d”,写出上述命题的逆命题、否命题与逆否命题,并分别判断它们的真假.

查看答案和解析>>

同步练习册答案