精英家教网 > 高中数学 > 题目详情
7.若Sn是等差数列{an}的前n项和,且$\frac{S_3}{3}=\frac{S_2}{2}+5$,则$\lim_{n→∞}\frac{S_n}{n^2}$=5.

分析 设等差数列{an}的公差为d,由已知可得$\frac{{S}_{n}}{{n}^{2}}$的表达式,求极限可得.

解答 解:设等差数列{an}的公差为d,
则由$\frac{S_3}{3}=\frac{S_2}{2}+5$可得$\frac{3{a}_{1}+\frac{3×2}{2}d}{3}$=$\frac{2{a}_{1}+\frac{2×1}{2}d}{2}$+5,
解得d=10,故$\frac{{S}_{n}}{{n}^{2}}$=$\frac{n{a}_{1}+\frac{n(n-1)}{2}d}{{n}^{2}}$=$\frac{5{n}^{2}+({a}_{1}-5)n}{{n}^{2}}$=5+$\frac{{a}_{1}-5}{n}$,
∴$\lim_{n→∞}\frac{S_n}{n^2}$=$\underset{lim}{n→∞}$(5+$\frac{{a}_{1}-5}{n}$)=5
故答案为:5

点评 本题考查等差数列的求和公式,涉及极限的运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在等差数列{an}中,已知公差d=-2,S20=100,则a1+a3+…+a19=60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列命题中正确的有②④(填序号)
①若-$\frac{π}{2}$<α<β<$\frac{π}{2}$,则α-β的取值范围为(-π,π);
②若α在第一象限,则$\frac{α}{2}$在第一、三象限;
③若sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$,则m=8;
④若sin$\frac{θ}{2}$=$\frac{3}{5}$,cos$\frac{θ}{2}$=-$\frac{4}{5}$,则θ在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将y=sin2x+cos2x的图象向右平移$\frac{π}{4}$个单位后,所得图象的解析式是(  )
A.y=sin2x-cos2xB.y=cos2x-sin2xC.y=cos2x+sin2xD.y=cosxsinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲、乙两人玩数字游戏,先由甲在一张卡片上任意写出一个数字,记为a,再由乙猜甲刚才写出的数字,把乙猜出的数字记为b,且a,b∈{1,2,3},若|a-b|≤1,则乙获胜,现甲、乙两人玩一次这个游戏,则乙获胜的概率为(  )
A.$\frac{7}{9}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“?a∈R,函数y=π”是增函数的否定是(  )
A.“?a∈R,函数y=π”是减函数B.“?a∈R,函数y=π”不是增函数
C.“?a∈R,函数y=π”不是增函数D.“?a∈R,函数y=π”是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别是a,b,c,已知C为锐角且$\sqrt{15}$asinA=bsinBsinC,b=2a.
(1)求tanC的值;
(2)若a+c=6,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了解班级学生对任课教师课堂教学的满意程度情况.现从某班全体学生中,随机抽取12名,测试的满意度分数(百分制)如下:65,52,78,90,86,86,87,88,98,72,86,87根据学校体制标准,成绩不低于76的为优良.
(Ⅰ)从这12名学生中任选3人进行测试,求至少有1人成绩是“优良”的概率;
(Ⅱ)从抽取的12人中随机选取3人,记ξ表示测试成绩“优良”的学生人数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的焦点坐标是F1(-1,0)、F2(1,0),过点F2垂直于长轴的直线l交椭圆C于B、D两点,且|BD|=3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过定点P(0,2)且斜率为k的直线l与椭圆C相交于不同两点M,N,试判断:在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案