精英家教网 > 高中数学 > 题目详情
12.命题“?a∈R,函数y=π”是增函数的否定是(  )
A.“?a∈R,函数y=π”是减函数B.“?a∈R,函数y=π”不是增函数
C.“?a∈R,函数y=π”不是增函数D.“?a∈R,函数y=π”是减函数

分析 通过全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,命题“?a∈R,函数y=π”是增函数的否定是:“?a∈R,函数y=π”不是增函数.
故选:C.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如果角x的终边在第二象限,那么函数y=$\frac{sinx}{\sqrt{1-co{s}^{2}x}}$+$\frac{cosx}{\sqrt{1-si{n}^{2}x}}$的值为(  )
A.1B.2C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{3}$,点$(\sqrt{3},\sqrt{2})$为椭圆上的一点.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若斜率为k的直线l过点A(0,1),且与椭圆E交于C,D两点,B为椭圆E的下顶点,求证:对于任意的k,直线BC,BD的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,则“$\frac{a}{b}$不是整数”的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若Sn是等差数列{an}的前n项和,且$\frac{S_3}{3}=\frac{S_2}{2}+5$,则$\lim_{n→∞}\frac{S_n}{n^2}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,梯形ABCD中,点E、F分别在AB、CD上,EF∥AD,假设EF作上下平行移动.
(1)如果$\frac{AE}{EB}$=$\frac{1}{2}$,求证:3EF=BC+2AD;
(2)如果$\frac{AE}{EB}$=$\frac{2}{3}$,求证:5EF=2BC+3AD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在三棱锥A-BCD中,AB⊥平面BCD,BC⊥BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°,点E,F分别是AC,AD的中点.
(1)求证:EF∥平面BCD;
(2)求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,若将f(x)的图象上所有点向右平移$\frac{π}{12}$个单位得到函数g(x)的图象,则函数g(x)的单调增区间为(  )
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}]$,k∈ZB.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}]$,k∈Z
C.$[kπ-\frac{π}{12},kπ+\frac{π}{12}]$,k∈ZD.$[kπ-\frac{7π}{12},kπ-\frac{π}{12}]$,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)是定义域为R的偶函数,且当x≥0时,f(x)=($\frac{1}{2}$)x,则不等式f(x)>$\frac{1}{2}$的解集为(  )
A.(-$\frac{1}{4}$,$\frac{1}{4}$)B.(-$\frac{1}{2}$,$\frac{1}{2}$)C.(-2,2)D.(-1,1)

查看答案和解析>>

同步练习册答案