分析 (1)可分别延长BA,CD,且交于O点,可设OA=x,AE=y,EB=2y,根据条件中的平行关系便可得到$\frac{x}{x+y}=\frac{AD}{EF}$①,$\frac{x}{x+3y}=\frac{AD}{BC}$②,这样①②联立可消去y得到(3EF-2AD-BC)•x=0,从而便可得出3EF=BC+2AD;
(2)证明方法同(1),可设AE=2y,EB=3y,根据平行关系便可得出两个关于x,y的等式,消去y即可得出5EF=2BC+3AD.
解答
证明:如图,分别延长BA,CD,设交于O点,设OA=x;
(1)如果$\frac{AE}{EB}=\frac{1}{2}$,设AE=y,EB=2y;
∵AD∥EF;
∴$\frac{x}{x+y}=\frac{AD}{EF}$①;
∵AD∥BC;
∴$\frac{x}{x+3y}=\frac{AD}{BC}$②;
①②联立消去y得,(3EF-2AD-BC)•x=0;
∴3EF-2AD-BC=0;
∴3EF=BC+2AD;
(2)如果$\frac{AE}{EB}=\frac{2}{3}$,设AE=2y,EB=3y;
∵AD∥EF;
∴$\frac{x}{x+2y}=\frac{AD}{EF}$③;
∵AD∥BC;
∴$\frac{x}{x+5y}=\frac{AD}{BC}$④;
③④联立消去y得,(5EF-3AD-2BC)•x=0;
∴5EF=2BC+3AD.
点评 考查平行线分线段成比例定理,以及相似三角形的判定,相似三角形的对应边的比例关系,消元法解二元一次方程的方法.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | i | B. | {i} | C. | {0,i} | D. | {-i,0,i} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “?a∈R,函数y=π”是减函数 | B. | “?a∈R,函数y=π”不是增函数 | ||
| C. | “?a∈R,函数y=π”不是增函数 | D. | “?a∈R,函数y=π”是减函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{\sqrt{2}}{6}$,$\frac{1}{3}$) | B. | ($\frac{\sqrt{2}}{12}$,$\frac{1}{6}$] | C. | ($\frac{\sqrt{2}}{6}$,$\frac{1}{3}$] | D. | [$\frac{\sqrt{2}}{12}$,$\frac{1}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | [1,2] | C. | [1,+∞) | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com