精英家教网 > 高中数学 > 题目详情
9.如图,已知在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,AB=1,PA•AC=1,∠ABC=θ(0<θ≤$\frac{π}{2}$),则四棱锥P-ABCD的体积V的取值范围是(  )
A.[$\frac{\sqrt{2}}{6}$,$\frac{1}{3}$)B.($\frac{\sqrt{2}}{12}$,$\frac{1}{6}$]C.($\frac{\sqrt{2}}{6}$,$\frac{1}{3}$]D.[$\frac{\sqrt{2}}{12}$,$\frac{1}{6}$)

分析 先根据条件得到四边形ABCD的面积S=sinθ,由余弦定理可求得AC=$\sqrt{2-2cosθ}$,即可得到PA,进而表示出四棱锥P-ABCD的体积,整理后再借助于三角函数的取值范围即可解题.

解答 解:S菱形ABCD=$2•\frac{1}{2}AB•BC•sinθ$=sinθ,
在△ABC中,由余弦定理得AC=$\sqrt{A{B}^{2}+B{C}^{2}-2AB•BCcosθ}$=$\sqrt{2-2cosθ}$.
∵PA•AC=1,∴PA=$\frac{1}{\sqrt{2-2cosθ}}$.
∴四棱锥P-ABCD的体积V=$\frac{1}{3}{S}_{菱形ABCD}•PA$=$\frac{\sqrt{2}}{6}×$$\sqrt{\frac{si{n}^{2}θ}{1-cosθ}}$=$\frac{\sqrt{2}}{6}×\sqrt{1+cosθ}$.
∵0<θ≤$\frac{π}{2}$,∴0≤cosθ<1.∴$\frac{\sqrt{2}}{6}$≤V<$\frac{1}{3}$.
故选:A.

点评 本题考查了余弦定理,三角函数的最值,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在等腰直角三角形ABC,∠C=90°,点D在线段AB上,且AD=$\frac{1}{3}$AB,延长线段CD至点E,使DE=CD,求cos∠CBE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,则“$\frac{a}{b}$不是整数”的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,梯形ABCD中,点E、F分别在AB、CD上,EF∥AD,假设EF作上下平行移动.
(1)如果$\frac{AE}{EB}$=$\frac{1}{2}$,求证:3EF=BC+2AD;
(2)如果$\frac{AE}{EB}$=$\frac{2}{3}$,求证:5EF=2BC+3AD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在三棱锥A-BCD中,AB⊥平面BCD,BC⊥BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°,点E,F分别是AC,AD的中点.
(1)求证:EF∥平面BCD;
(2)求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,为了测量河对岸电视塔CD的高度,小王在点A处测得塔顶D仰角为30°,塔底C与A的连线同河岸成15°角,小王向前走了1200m到达M处,测得塔底C与M的连线同河岸成60°角,则电视塔CD的高度为600$\sqrt{2}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,若将f(x)的图象上所有点向右平移$\frac{π}{12}$个单位得到函数g(x)的图象,则函数g(x)的单调增区间为(  )
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}]$,k∈ZB.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}]$,k∈Z
C.$[kπ-\frac{π}{12},kπ+\frac{π}{12}]$,k∈ZD.$[kπ-\frac{7π}{12},kπ-\frac{π}{12}]$,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=1+i,则z4=(  )
A.-4iB.4iC.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{2}{3}\sqrt{2}$,且内切于圆x2+y2=9.
(1)求椭圆C的方程;
(2)过点Q(1,0)作直线l(不与x轴垂直)与该椭圆交于M、N两点,与y轴交于点R,若$\overrightarrow{RM}$=λ$\overrightarrow{MQ}$,$\overrightarrow{RN}$=$μ\overrightarrow{NQ}$,试判断λ+μ是否为定值,并说明理由.

查看答案和解析>>

同步练习册答案