精英家教网 > 高中数学 > 题目详情
19.如图,在等腰直角三角形ABC,∠C=90°,点D在线段AB上,且AD=$\frac{1}{3}$AB,延长线段CD至点E,使DE=CD,求cos∠CBE.

分析 不妨设AC=1,则AD=$\frac{1}{3}AB$=$\frac{\sqrt{2}}{3}$,BD=$\frac{2}{3}AB$=$\frac{2\sqrt{2}}{3}$,在△BCD中,由余弦定理可得:CD2=$(\frac{2\sqrt{2}}{3})^{2}+{1}^{2}-2×\frac{2\sqrt{2}}{3}×1×cos4{5}^{°}$=$\frac{5}{9}$,解得CD.由余弦定理可得:cos∠BCD.在△BCE中,由余弦定理可得BE.由余弦定理可得:cos∠CBE.

解答 解:在腰直角△ABC中,不妨设AC=1,则AD=$\frac{1}{3}AB$=$\frac{\sqrt{2}}{3}$,BD=$\frac{2}{3}AB$=$\frac{2\sqrt{2}}{3}$,
在△BCD中,由余弦定理可得:CD2=$(\frac{2\sqrt{2}}{3})^{2}+{1}^{2}-2×\frac{2\sqrt{2}}{3}×1×cos4{5}^{°}$=$\frac{5}{9}$,解得CD=$\frac{\sqrt{5}}{3}$.
由余弦定理可得:cos∠BCD=$\frac{{1}^{2}+(\frac{\sqrt{5}}{3})^{2}-(\frac{2\sqrt{2}}{3})^{2}}{2×1×\frac{\sqrt{5}}{3}}$=$\frac{\sqrt{5}}{5}$.
在△BCE中,由余弦定理可得:BE2=${1}^{2}+(\frac{2\sqrt{5}}{3})^{2}$-$2×1×\frac{2\sqrt{5}}{3}$cos∠BCE=$\frac{17}{9}$,解得BE=$\frac{\sqrt{17}}{3}$.
由余弦定理可得:cos∠CBE=$\frac{\frac{17}{9}+1-(\frac{2\sqrt{5}}{3})^{2}}{2×\frac{\sqrt{17}}{3}×1}$=$\frac{\sqrt{17}}{17}$.
∴DE=$\frac{\sqrt{5}}{3}$.

点评 本题考查了余弦定理、等腰直角三角形的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知△ABC的顶点分别为A(2,1),B(3,2),C(-3,-1),BC边上的高为AD,则点D的坐标为(  )
A.(-$\frac{9}{5}$,$\frac{7}{5}$)B.($\frac{9}{2}$,-$\frac{7}{5}$)C.($\frac{9}{5}$,$\frac{7}{5}$)D.(-$\frac{9}{2}$,-$\frac{7}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算:(1)log37•log73;
(2)log225•log38•log59;
(3)${3}^{{log}_{2}3{•log}_{3}4{•log}_{4}5{•log}_{5}2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.cos(-$\frac{55}{6}$π)的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)计算:(2-i)(-1+5i)(3+4i)+2i;
(2)已知复数z=(1-i)2+1+3i,若z2+az+b=1-i,a、b∈R,求实数对(a,b)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知△ABC的面积为$\frac{\sqrt{3}}{4}$(a2+c2-b2),则sinB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知过圆锥顶点S作截面SAB与底面成60°的二面角,且A、B分底面圆周为1:2的弧度,已知截面SAB的面积为24$\sqrt{3}$,求:
(1)底面圆心到平面SAB的距离.
(2)母线与底面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,直三棱柱ABC-A1B1C1中,AB⊥AC,E,F分别是BB1,A1C1的中点.
(Ⅰ)求证EF∥平面A1BC;
(Ⅱ)若AB=AC=AA1=1,求二面角A1-BC-F的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,已知在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,AB=1,PA•AC=1,∠ABC=θ(0<θ≤$\frac{π}{2}$),则四棱锥P-ABCD的体积V的取值范围是(  )
A.[$\frac{\sqrt{2}}{6}$,$\frac{1}{3}$)B.($\frac{\sqrt{2}}{12}$,$\frac{1}{6}$]C.($\frac{\sqrt{2}}{6}$,$\frac{1}{3}$]D.[$\frac{\sqrt{2}}{12}$,$\frac{1}{6}$)

查看答案和解析>>

同步练习册答案