精英家教网 > 高中数学 > 题目详情
10.计算:(1)log37•log73;
(2)log225•log38•log59;
(3)${3}^{{log}_{2}3{•log}_{3}4{•log}_{4}5{•log}_{5}2}$.

分析 直接利用对数运算法则化简求解即可.

解答 解:(1)log37•log73=log37•$\frac{1}{lo{g}_{3}7}$=1.
(2)log225•log38•log59=$\frac{2lg5•3lg2•2lg3}{lg2lg3lg5}$=12;
(3)${3}^{{log}_{2}3{•log}_{3}4{•log}_{4}5{•log}_{5}2}$=${3}^{\frac{lg3•2lg2•lg5•lg2}{lg2•lg3•2lg2•lg5}}$=3.

点评 本题考查对数运算法则的应用,换底公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某市小型机动车驾照“科二”考试共有5项考察项目,分别记作①,②,③,④,⑤
(Ⅰ)某教练将所带10名学员“科二”模拟考试成绩进行统计(如表所示),并打算从恰有2项成绩不合格的学员中任意抽出2人进行补测(只侧不合格项目),求补测项目种类不超过3项的概率.
项目/学号编号
(1)TTT
(2)TTT
(3)TTTT
(4)TTT
(5)TTTT
(6)TTT
(7)TTTT
(8)TTTTT
(9)TTT
(10)TTTTT
注:“T”表示合格,空白表示不合格
(Ⅱ)如图,某次模拟演练中,教练要求学员甲倒车并转向90°,在车边缘不压射线AC与射线BD的前提下,将汽车驶入指定的停车位.根据经验,学员甲转向90°后可使车尾边缘完全落在线段CD上,且位于CD内各处的机会相等.若CA=BD=0.3m,AB=2.4m,汽车宽度为1.8m,求学员甲能按教练要求完成任务的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.z是复数,z+i,z-3i是实系数一元二次方程x2+tx+4=0(t∈R)的两个虚根.
(1)求t的值.
(2)设ω=z+cosθ+isinθ,求|ω|取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的值域
(1)y=$\frac{x^2-1}{x^2+1}$;(2)y=$\frac{x^2-x}{x^2-x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x),g(x)满足${∫}_{-a}^{a}$f(x)g(x)dx=0(a>0),则称f(x),g(x)为区间[-a,a]上的一组“垂交函数”.下面给出三组函数:①f(x)=x2-x-2,g(x)=x;②f(x)=sin$\frac{1}{2}$x,g(x)=cos$\frac{1}{2}$x;③f(x)=ex,g(x)=x+1.
其中为区间[-1,1]上的“垂交函数”的组数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,已知b+c=2a,试推断是否存在p,使$\frac{1+cosB}{sinB}$+$\frac{1+cosC}{sinC}$=p•$\frac{sinA}{1-cosA}$成立?若存在,求p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果角x的终边在第二象限,那么函数y=$\frac{sinx}{\sqrt{1-co{s}^{2}x}}$+$\frac{cosx}{\sqrt{1-si{n}^{2}x}}$的值为(  )
A.1B.2C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在等腰直角三角形ABC,∠C=90°,点D在线段AB上,且AD=$\frac{1}{3}$AB,延长线段CD至点E,使DE=CD,求cos∠CBE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,则“$\frac{a}{b}$不是整数”的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案