精英家教网 > 高中数学 > 题目详情
16.已知$sinα=-\frac{2}{3}$且α在第三象限,则tan(π+α)等于(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$-\frac{{2\sqrt{5}}}{5}$C.$\frac{{\sqrt{5}}}{2}$D.$-\frac{{\sqrt{5}}}{2}$

分析 由已知利用同角三角函数基本关系式可求cosα,利用诱导公式,同角三角函数基本关系式化简所求即可计算得解.

解答 解:∵$sinα=-\frac{2}{3}$且α在第三象限,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{5}}{3}$,
∴tan(π+α)=tanα=$\frac{sinα}{cosα}$=$\frac{2\sqrt{5}}{5}$.
故选:A.

点评 本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin2x+sinxcosx.
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的单调增区间;
(3)画出函数y=f(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知某水库近50年来年入流量X(单位:亿立方米)的频数分布如表:
年入流量40<X<8080≤X≤120X>120
年数10355
将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.现计划在该水库建一座至多安装3台发电机组的水电站,已知每年发电机组最多可运行台数Y受当年年入流量X的限制,并有如下关系:
年入流量40<X<8080≤X≤120X>120
最多运行台数123
(1)求随机变量Y的数学期望;
(2)若某台发电机组正常运行,则该台发电机组年利润为5000万元;若某台发电机组未运行,则该台发电机组年亏损800万元.为使水电站年总利润的期望达到最大,应安装发电机组多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.△ABC是边长为1的等边三角形,已知向量$\vec a$,$\vec b$满足$\overrightarrow{{A}{B}}=\vec a+\vec b$,$\overrightarrow{{A}C}=\vec a-\vec b$,则下列结论错误的是(  )
A.$|{\vec a}|=\frac{{\sqrt{3}}}{2}$B.$|{\vec b}|=\frac{1}{2}$C.$({\vec a+\vec b})•\vec a=-\frac{1}{4}$D.$\vec a⊥\vec b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若x,t满足约束条件$\left\{\begin{array}{l}{x-3≤0}\\{y-a≤0}\\{x+y≥0}\end{array}\right.$,且目标函数z=2x+y的最大值为10,则a等于(  )
A.-3B.-10C.4D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,图中描述了甲乙丙三辆汽车,在不同速度下的燃油效率请况,下列叙述错误的是(  )
A.消耗1升汽油,乙车行驶的最大路程超过5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少
C.甲船以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=x+\frac{a}{x}+b$且$f(1)=2,f(2)=\frac{5}{2}$.
(1)求f(x)的解析式并判断函数f(x)的奇偶性;
(2)判断函数f(x)在区间(1,+∞)上单调性,并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A,B,C所对的边分别为a,b,c,sinAsinBcosC=sin2C.
(Ⅰ)求$\frac{{{a^2}+{b^2}}}{c^2}$的值;
(Ⅱ)若${a^2}=\frac{2}{3}{c^2}$,且△ABC的面积${S_{△ABC}}=2\sqrt{5}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.10个人站成2排照相,前排4人,后排6人.
(1)若甲必在前排,有多少种排法?
(2)若甲、乙在同一排,有多少种排法?
(3)若甲、乙至少一人在前排,有多少种排法?

查看答案和解析>>

同步练习册答案