精英家教网 > 高中数学 > 题目详情
1.观察下列式子:$\sqrt{1×2}<2$,$\sqrt{1×2}+\sqrt{2×3}<\frac{9}{2}\sqrt{1×2}+\sqrt{2×3}+\sqrt{3×4}<8$,$\sqrt{1×2}+\sqrt{2×3}+\sqrt{3×4}+\sqrt{4×5}<\frac{25}{2}$,
…,根据以上规律,第n个不等式是$\sqrt{1×2}+\sqrt{2×3}+…+\sqrt{n×(n+1)}<\frac{{{{(n+1)}^2}}}{2}$.

分析 根据所给不等式,即可得出结论.

解答 解:根据所给不等式可得$\sqrt{1×2}+\sqrt{2×3}+…+\sqrt{n×(n+1)}<\frac{{{{(n+1)}^2}}}{2}$.
故答案为:$\sqrt{1×2}+\sqrt{2×3}+…+\sqrt{n×(n+1)}<\frac{{{{(n+1)}^2}}}{2}$.

点评 本题考查归纳推理,考查学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知四面体ABCD,AB=4,AC=AD=6,∠BAC=∠BAD=60°,∠CAD=90°,则该四面体外接球半径为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以下四个结论,正确的是
①质检员从匀速传递的产品生产流水线上,每间隔10分钟抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②在频率分布直方图中,所有小矩形的面积之和是1;
③在回归直线方程$\stackrel{∧}{y}$=0.2x+12中,当变量x每增加一个单位时,变量y一定增加0.2个单位;
④对于两个分类变量X与Y,求出其统计量K2的观测值k,观测值k越大,我们认为“X与Y有关系”的把握程度就越大.(  )
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆(x-2)2+(y+1)2=4与圆(x-3)2+(y-2)2=4的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x∈[0,3],执行如图所示的程序框图,从输出的结果中随机取一个数a,则“a≤5”的概率为(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{2}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=m-|x+4|(m>0),且f(x-2)≥0的解集为[-3,-1].
(1)求m的值;
(2)若a,b,c都是正实数,且$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=m$,求证:a+2b+3c≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x3+ax+1的图象在点(1,f(1))处的切线过点(2,7),则a=(  )
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在${(\root{3}{x}-\frac{2}{x})^n}$的二项展开式中,二项式系数之和为128,则展开式中x项的系数为-14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某单位为了解甲、乙两部门对本单位职工的服务情况,随机访问50名职工.已知50名职工对甲、乙两部门的评分都在区间[50,100]内,根据50名职工对甲部门的评分绘制的频率分布直方图,以及根据50名职工对乙部门评分中落在[50,60),[60,70)内的所有数据绘制的茎叶图,如图所示.
(1)求频率分布直方图中x的值;
(2)若得分在70分及以上为满意,试比较甲、乙两部门服务情况的满意度;
(3)在乙部门得分为[50,60),[60,70)的样本数据中,任意抽取两个样本数据,求至少有一个样本数据落在[50,60)内的概率.

查看答案和解析>>

同步练习册答案