精英家教网 > 高中数学 > 题目详情
11.已知四面体ABCD,AB=4,AC=AD=6,∠BAC=∠BAD=60°,∠CAD=90°,则该四面体外接球半径为2$\sqrt{5}$.

分析 作出图形,利用勾股定理,求出四面体外接球半径.

解答 解:如图所示,O′为△ACD的外心,O为球心,BE⊥平面ACD,BF⊥AC,则EF⊥AC,∴AF=2,AE=2$\sqrt{2}$,BE=$\sqrt{16-8}$=2$\sqrt{2}$.
设该四面体外接球半径为R,OO′=d,则2+(2$\sqrt{2}$+d)2=d2+(3$\sqrt{2}$)2
∴d=$\sqrt{2}$,CD=6$\sqrt{2}$,
∴R=$\sqrt{2+18}$=2$\sqrt{5}$,
故答案为:2$\sqrt{5}$.

点评 本题考查四面体外接球半径,考查勾股定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)满足:f(x+1)=$\sqrt{f(x){-f}^{2}(x)}+\frac{1}{2}$,数列{an}满足an=f2(n)-f(n),n∈N*,若其前n项和为-$\frac{35}{16}$,则n的值为(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$的左,右焦点分别为F1,F2,O为坐标原点,圆O是以F1F2为直径的圆,直线$l:\sqrt{2}x+\sqrt{3}y+t=0$与圆O有公共点.则实数t的取值范围是(  )
A.$[{-2\sqrt{2},2\sqrt{2}}]$B.[-4,4]C.[-5,5]D.$[{-5\sqrt{2},5\sqrt{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率是$\frac{{\sqrt{3}}}{2}$,且直线l1:$\frac{x}{a}+\frac{y}{b}=1$被椭圆C截得的弦长为$\sqrt{5}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l1与圆D:x2+y2-6x-4y+m=0相切:
(i)求圆D的标准方程;
(ii)若直线l2过定点(3,0),与椭圆C交于不同的两点E、F,与圆D交于不同的两点M、N,求|EF|•|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{ax,x<0}\end{array}\right.$若方程f(-x)=f(x)有五个不同的根,则实数a的取值范围为(  )
A.(-∞,-e)B.(-∞,-1)C.(1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)是定义域为R的奇函数,当x∈[0,1]时,f(x)=log2(x+1),则f(1-$\sqrt{2}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2+a)ex(a是常数,e=2.71828…是自然对数的底数),曲线y=f(x)与x轴相切.
(Ⅰ)求实数a的值;
(Ⅱ)设方程f(x)=x2+x的所有根之和为S,且S∈(n,n+1),求整数n的值;
(Ⅲ)若关于x的不等式mf(x)+2x+2<2ex在(-∞,0)内恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在条件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≤0}\\{2x-y-3≤0}\end{array}\right.$下,目标函数z=x+2y的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.观察下列式子:$\sqrt{1×2}<2$,$\sqrt{1×2}+\sqrt{2×3}<\frac{9}{2}\sqrt{1×2}+\sqrt{2×3}+\sqrt{3×4}<8$,$\sqrt{1×2}+\sqrt{2×3}+\sqrt{3×4}+\sqrt{4×5}<\frac{25}{2}$,
…,根据以上规律,第n个不等式是$\sqrt{1×2}+\sqrt{2×3}+…+\sqrt{n×(n+1)}<\frac{{{{(n+1)}^2}}}{2}$.

查看答案和解析>>

同步练习册答案