精英家教网 > 高中数学 > 题目详情
10.在${(\root{3}{x}-\frac{2}{x})^n}$的二项展开式中,二项式系数之和为128,则展开式中x项的系数为-14.

分析 利用二项式系数和为2n,列出方程求出n;利用二项展开式的通项公式求出通项,令x的指数为1,求出展开式中含x的系数

解答 解:∵展开式中二项式系数之和为2n
∴2n=128
解得n=7,
∴($\root{3}{x}$-$\frac{2}{x}$)7展开式的通项为(-2)rC7rx${\;}^{\frac{7-4r}{3}}$
令$\frac{7-4r}{3}$=1,
解得r=1
故展开式中x的系数为-2C71=-14
故答案为:-14.

点评 本题考查二项式系数的性质:二项式系数和为2n、考查利用二次展开式的通项公式解决二项展开式的特定项问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在条件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≤0}\\{2x-y-3≤0}\end{array}\right.$下,目标函数z=x+2y的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.观察下列式子:$\sqrt{1×2}<2$,$\sqrt{1×2}+\sqrt{2×3}<\frac{9}{2}\sqrt{1×2}+\sqrt{2×3}+\sqrt{3×4}<8$,$\sqrt{1×2}+\sqrt{2×3}+\sqrt{3×4}+\sqrt{4×5}<\frac{25}{2}$,
…,根据以上规律,第n个不等式是$\sqrt{1×2}+\sqrt{2×3}+…+\sqrt{n×(n+1)}<\frac{{{{(n+1)}^2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设$\overrightarrow{a}$,$\overrightarrow{b}$为向量,则“$\overrightarrow{a}$•$\overrightarrow{b}$=0”是“$\overrightarrow{a}$⊥$\overrightarrow{b}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数$f(x)=2cos(x-\frac{π}{3})-1$的图象向右平移$\frac{π}{3}$个单位,再把所有的点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到函数y=g(x)的图象,则图象y=g(x)的一个对称中心为(  )
A.$(\frac{π}{6},0)$B.$(\frac{π}{12},0)$C.$(\frac{π}{6},-1)$D.$(\frac{π}{12},-1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.cos2165°-sin215°=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=|ex-1|,又g(x)=f2(x)-tf(x)(t∈R),若满足g(x)=-1的x有三个,则t的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a<0,b∈R,则“a<b”是“|a|<b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线C:y2=2px与点N(-2,2),过C的焦点且斜率为2的直线与C交于A、B两点,若NA⊥NB,则p=(  )
A.-2B.2C.-4D.4

查看答案和解析>>

同步练习册答案